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Abstract— In a peer-to-peer network, nodes are typically re-
quired to route packets for each other. This leads to a problem
of “free-loaders,” nodes that use the network but refuse to
route other nodes’ packets. In this paper we study ways of
designing incentives to discourage free-loading. We model the
interactions between nodes as a “random matching game,” and
describe a simple reputation system that provides incentives for
good behavior. Under certain assumptions, we obtain a stable
subgame-perfect equilibrium. We use simulations to investigate
the robustness of this scheme in the presence of noise and
malicious nodes, and we examine some of the design trade-offs.
We also evaluate some possible adversarial strategies, and discuss
how our results might apply to real peer-to-peer systems.
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I. INTRODUCTION

Peer-to-peer networks suffer from the problem of free-
loaders, users who consume resources on the network without
contributing anything in return. Originally it was hoped that
users would be altruistic, “from each according to his abilities,
to each according to his needs.” In practice, however, altruism
breaks down as networks grow larger and include more diverse
users. This situation can lead to a “tragedy of the commons,”
where the individual players’ self-interest causes the system
to collapse.

This paper focuses on a special version of the free-loader
problem which arises in peer-to-peer routing. Each node in the
network relies on other nodes to forward its requests, and it in
turn is expected to forward the requests sent by other nodes.
However, a self-interested user might choose to free-load by
refusing to forward requests, conserving local bandwidth.

To reduce free-loading, the system as a whole must provide
incentives for good behavior. This paper investigates one such
scheme, using tools from game theory. First, we model a
generic peer-to-peer network as a random-matching game.
This game was previously studied by Kandori, who showed
that, using a simple reputation system, cooperation can be
sustained as a stable subgame-perfect equilibrium [1]. We
use simulations to measure the robustness of this scheme to
malicious nodes and noise.

We then consider a modified version of the random match-
ing game that models peer-to-peer routing. Using a simple
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reputation system, under certain assumptions, we again get
a stable subgame-perfect equilibrium. We use simulations to
measure the robustness of this equilibrium in the presence of
malicious nodes and noise; we observe a trade-off between
having strong incentives and tolerating noise. We also demon-
strate that the reputation system can still be effective even if
it only monitors a small fraction of the routing events. These
results are encouraging, with implications for the design of
practical systems.

Additionally, we use simulations to study some possible
adversarial strategies, and some scenarios involving heteroge-
nous populations of nodes. Finally, we discuss several attacks
that could occur in a real peer-to-peer system, and we sketch
out some ideas about how our reputation system might be
implemented.

There has been a substantial amount of work on using
incentives in computer science; for a recent survey, see [2].
Incentives for peer-to-peer networks have been studied in [3].
Also, useful techniques can be found in game theory and
mechanism design [4]. In particular, one can view peer-to-peer
networks as an example of a public goods problem [5].

Section II briefly describes the basic random-matching game
and the equilibrium strategy; for more details, see the compan-
ion technical report [6]. Section III describes the peer-to-peer
routing game, and section IV presents simulation results for
that game. Section V discusses some open issues and related
work. Section VI concludes the paper.

II. THE RANDOM MATCHING GAME

A. The Prisoner’s Dilemma

First, we review some basic notions from game theory.
Consider a game with n players, labelled 1, 2, . . . , n. A
dominant strategy for player i is a strategy which is optimal
for player i, regardless of what the other players do. This
is a desirable property, but it is difficult to achieve; in some
games there are no dominant strategies. A (Nash) equilibrium
is a set of strategies (s1, s2, . . . , sn) such that, for each player
i, if all the other players j follow their assigned strategies sj ,
then strategy si is optimal for player i. This is weaker than
the notion of dominant strategy, but it is easier to achieve.
A special case is subgame-perfect equilibrium, where, at any
time during the game, and regardless of what the players did
prior to this moment, it is still an equilibrium for all the players
to follow their assigned strategies from this time onward.

The Prisoner’s Dilemma is a well-known game, with the
following payoff matrix:
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Here C means “cooperate,” D means “defect,” and the payoffs
consist of R (reward), P (punishment), T (temptation) and S
(sucker). The payoffs satisfy the inequalities T > R > P >
S so that, for each player, defection is a dominant strategy.
The dilemma comes from the fact that, if both players had
cooperated, they could have achieved a much more desirable
outcome.

In the context of networks, the Prisoner’s Dilemma models
two nodes who want to trade resources. Suppose that providing
a resource has some cost c > 0, and receiving a resource has
some benefit b > 0, where b > c, so it is a positive-sum game.
Then we have a Prisoner’s Dilemma: a node cooperates if it
services a request, a node defects if it ignores a request, and
the payoffs are

T = b, R = b − c, P = 0, S = −c

As noted earlier, in a single-round Prisoner’s Dilemma, ra-
tional players will always defect. In a repeated game, however,
the situation is different because cooperation can be sustained
by the threat of punishment in the next round. One effective
strategy is “tit-for-tat,” where each player cooperates in the
first round, and in each subsequent round, does whatever his
opponent did in the previous round. There are a wide variety
of possible strategies; see [7] for a survey of work in this area.

B. The Random Matching Game

The main difficulty with peer-to-peer networks is that users
do not form long-lived relationships with other users, so
strategies like “tit-for-tat” do not work. The common case
is to interact with a stranger, with no prior history and no
expectation of meeting again in the future. We model this
using Kandori’s random matching game [1]: In each round,
nodes are randomly matched, and then each pair plays a
(single-round) Prisoner’s Dilemma. For simplicity, we will do
matchings between the left and right vertices in a complete
bipartite graph. We do allow non-uniform random matching.

It would seem that cooperation cannot be sustained between
complete strangers. Indeed, the strategy described below does
rely on a primitive reputation scheme. But Kandori also found
another equilibrium strategy that does not use any kind of
reputation information; instead, it relies on a global threat
that any deviation from equilibrium will eventually cause
the system to collapse. This equilibrium is unstable, since
cooperation will break down after a single error or mistake
by one of the players. So it is not suitable for a real system.
This example illustrates some of the issues in applying game
theory to a real-world situation.

C. A Simple Equilibrium Strategy

We now describe a simple strategy for the random-matching
game and prove that it is a subgame-perfect equilibrium. This
result is due to Kandori [1]. In this paper we refer to it as the
“social norm” strategy.

Each node has a reputation consisting of a number in the
range {0, 1, ..., τ}; 0 means innocent, nonzero means guilty.
We assume the existence of a trusted authority, who observes
the players’ actions and updates their reputations accordingly.
Essentially, the reputations ensure that a node who defects will
be punished in the next round, even though it plays a different
opponent in each round. The strategy is as follows:

• If the two players are innocent, they both cooperate.
• If the two players are guilty, they both defect.
• If one is innocent and one is guilty, then the guilty player

cooperates, and the innocent player defects.

Any deviation from the above strategy triggers a punishment
that lasts for τ rounds. That is, the offending node is marked
“guilty,” causing it to be punished by its opponents. After
τ rounds, the node becomes innocent again, provided it has
followed its assigned strategy. If a node deviates during the
τ -round punishment phase, the punishment is re-started from
the beginning.

Kandori showed that the social norm strategy is a subgame-
perfect equilibrium, provided that we set the punishment
length τ and the discount factor δ correctly. (The discount
factor can be interpreted as the probability that a player will
continue playing the game for another round. It measures the
“patience” of the players: setting δ = 1 means that players
are infinitely patient, while setting δ to a smaller value, say
1/2, means that players favor more short-term gains.) The
equilibrium is also stable, in the sense that, starting from any
initial state, it will re-establish cooperation after τ rounds. The
proof of the equilibrium can be found in [1].

D. Tolerating Malicious Nodes

We were able to extend Kandori’s analysis to look at
the effect of malicious nodes, i.e., nodes that always defect.
Provided that we use uniform random matching, we find that
the incentives and the global efficiency decrease gradually,
as the fraction of malicious nodes increases. This work is
described in the technical report [6].

E. Simulations of the Random Matching Game

We ran simulations to measure the effects of malicious
nodes and noise in the random matching game. We found
that the social norm equilibrium is robust to small fractions of
malicious nodes and low levels of noise. In particular, there is
a trade-off between using harsher punishments so as to tolerate
malicious nodes, and using milder punishments to tolerate
noise. We also tried to test the stability of the social norm
in an evolutionary game, but got mixed results. These results
are described in the technical report [6].

III. THE PEER-TO-PEER ROUTING GAME

To study the problem of peer-to-peer routing, we con-
structed a new kind of random matching game, and we defined
an analogous “social norm” strategy for this game. We then
ran simulations to measure the performance of the social norm
strategy under varying conditions.



A. Peer-to-Peer Routing

We consider networks where each node has a routing table
containing the addresses of a small number of nodes, and
requests are forwarded through multiple hops until they reach
their destinations. We use Chord [8] as an example, although
this basic structure is found in many peer-to-peer networks.

We define a simplified model of routing as follows: We have
a network of N nodes, arranged in a ring. Each node has
a routing table of size lg(N), called its finger table, which
contains the addresses of nodes (“fingers”) that are located
ahead of it on the ring at distances 2i, i = 0, 1, 2, . . . , lg(N)−
1. That is, the fingers are at distances 1, 2, 4, . . . , N/2. To send
a request, a node contacts the node in its finger table that is
the closest predecessor to the destination node; this node then
does the same using its own finger table, and so on until the
destination node is reached. Sending a request thus takes at
most lg(N) hops. To allow the sender to determine the identity
of the node that dropped its request, we adopt iterative rather
than recursive routing for our game.

B. The Game

We define the peer-to-peer routing game as follows: We
have N nodes, with routing tables as described above; the
routing tables are filled in with randomly chosen neighbors
before the start of the game.

The game runs in continuous time, rather than discrete
rounds: at any time, a node can send a request to be routed
by the network. (The routing process is described below.) We
assume that requests are generated according to some external
process. The point is that nodes do not control the sending of
requests, but can only decide whether to forward requests for
other nodes. (Later, we will revisit this issue of how requests
are generated.)

When a node sends a request, it is matched with a sequence
of opponents, in a way that simulates the routing of a request to
a destination chosen uniformly at random. For the first hop, the
sender s is randomly matched with one of its fingers, choosing
the j’th longest finger with probability 1/2j . In the case where
none of the fingers is chosen (which happens with probability
1/N ), we match node s with its shortest finger.

Say that node s ends up matched with node t. The two
nodes then play an asymmetric game: s does nothing, while t
can either cooperate (forward the request) or defect (drop the
request). At this stage, s does not receive any payoff, while t
pays some cost c if it cooperates and 0 if it defects.

If t defects, then s is finished and gets payoff 0, since its
request has been dropped. But if t cooperates, then s goes on
to play another game—its request has been forwarded one hop,
and it is now ready to make another hop. s can be matched
with any of t’s fingers that are shorter than t is as a finger of
s. (In other words, the next hop must be shorter than the last
hop.) We choose the j’th longest such finger with probability
1/2j .

Thus the game repeats, until either one of s’s opponents
defects, or s is matched with a finger of length 1 (which means
there are no shorter fingers). Node s now plays the asymmetric

game with this final opponent t. If t cooperates, s receives a
large payoff b, because its request has reached its destination;
if t defects, s receives nothing. (If t cooperates, it pays the
same cost c as in the previous cases.)

This completes the description of the game. We point out
the following facts: First, this game uses non-uniform random
matching. For the first hop, the matching is highly non-
uniform, since there are only lg(N) possible choices (and one
of them has probability 1/2); but for later hops, the matching
becomes more uniform.

Second, if we ignore the actual choices of the intermediate
nodes, and simply look at the lengths of the hops, we observe
that, for each � = 1, 2, . . . , lg(N) − 1, the probability of at
some point taking a hop of length 2� is 1/2; for � = 0, the
probability of taking a hop of length 2� = 1 is 1, but this is
really a quirk of the game. So the expected number of hops
per request is (lg(N) − 1)/2 + 1 = lg(N)/2 + 1/2.

Finally, we think it is realistic that the sender receives a large
payoff when its request reaches its destination, and nothing
when its request gets dropped. A successfully delivered request
presumably has a fairly high value to the sender, much higher
than the cost of forwarding someone else’s request; whereas,
when a request gets dropped, the sender may learn some
routing information, but it only amounts to a partial (and
unreliable) route. Thus routing is a positive-sum game, but it
is brittle, since a node that drops a request completely wipes
out the sender’s payoff.

Note that as the network grows, the number of hops per
request slowly increases. In order for the incentives to work,
the final payoff per request must also increase, to balance out
the cost of routing. Since each request takes about lg(N)/2
hops on average, we need at least b > (lg(N)/2)c, assuming
that the traffic is evenly distributed among the nodes. (That is,
the benefit of sending a request must be at least lg(N)/2 times
the cost of routing a request.) In a real network, b might have
to be somewhat higher, to account for uneven load balancing.

The size of the payoff b will depend on what a “request”
actually means in a particular application. However, we think
it is reasonable to assume that the cost c is small relative to
b. Consider the following scenario: Each node is connected
through a cable modem with uplink bandwidth of 256 Kb/sec,
and it allocates 10% of this bandwidth to forward requests.
For simplicity, we ignore the bandwidth used by the Chord
stabilization protocol. We assume each request is 110 bytes
long (this is the size of a single packet, including all headers,
in one Chord implementation that we looked at). Then each
node can forward about 29 requests/sec. If the network has
1024 nodes, then each request takes lg(1024)/2 = 5 hops on
average. So each node can send up to 29/5 ≈ 6 requests/sec,
assuming the traffic is evenly distributed among the nodes; or,
up to (say) 3 requests/sec, if we want to tolerate some uneven
load balancing. This is adequate for many applications, and it
suggests that each node can route a large number of requests
for a fairly low cost.



C. The “Social Norm” Strategy

We would like to find an analogue of Kandori’s “social
norm” strategy, that will work in the peer-to-peer routing
game. The routing game differs from Kandori’s game in that
it is asymmetric: in each round, we have node A requesting
a service from node B and node B requesting a service from
node C, where A and C are different.

A −→ B −→ C

However, the social norm still makes sense in this situation.
Using the social norm, what B should give to A depends only
on A’s reputation, and what B should receive from C depends
only on B’s reputation. So B only has to know about its own
reputation and about A’s reputation; it does not care if A and
C are not the same entity.

So we can simply state the social norm strategy for the
asymmetric game. Let A make a request to B. Then:

• If A is innocent, B cooperates; if A is guilty, B defects.

As before, we assume that there is a trusted authority which
observes the nodes’ actions and marks each node as innocent
or guilty.

Finally, we need to specify what kinds of punishments will
be enforced by the trusted authority. We use a “time-based”
punishment: when a node deviates from the social norm, it
is punished for a period of time τ ; if the node deviates again
while it is being punished, the punishment period is re-started.
During the punishment period, all requests sent by this node
will be dropped; but this node will still be required to forward
the requests of other innocent nodes. This is a natural way to
do punishment in the continuous-time game, and it would not
be hard to implement in a real system.

In certain cases, we can show that the social norm is a
subgame-perfect equilibrium for the routing game. Specif-
ically, if each node’s requests are generated by a Poisson
process with the same rate, then Kandori’s original proof
goes through with minor modifications. The intuition is that
requests are generated at a smooth rate, so over the course of
one punishment period, a node will ask other nodes to route
its requests, and it will route requests for other nodes, roughly
the same number of times. This situation is similar to the
original (symmetric) random-matching game. As before, the
equilibrium is stable in the sense that, starting from any initial
state, cooperation will be re-established after time τ . The proof
of this result is given in the following subsection.

Unfortunately, if requests are bursty, or if nodes can manip-
ulate the timing of their requests, then the social norm may
not be an equilibrium. If a node receives a very large burst of
requests, it might be cheaper to drop the requests and undergo
punishment. Also, a node can cheat by defecting while it
accumulates a large number of requests, then cooperating just
long enough to rebuild its reputation and send off all of the
requests in one burst.

Finally, even when an equilibrium can be achieved, the
routing game is not as robust in the presence of malicious

nodes. This is due to the non-uniform matching. The burden
of the malicious nodes falls disproportionally on a small
group of honest nodes—namely, those nodes who have a
malicious node as one of their frequently-used “long” fingers.
For instance, a node whose longest finger is a malicious node
will lose half of its requests. For these unlucky nodes, the
incentives break down very quickly.

D. Proof of Equilibrium

First, some preliminary remarks: Suppose that some event
occurs at random times specified by a Poisson process with
rate λ. Let Yi be the time of the i’th event, and Ti be the time
between the i − 1’st event and the i’th event. If we earn p
points each time the event occurs, and δ is the discount factor,
then our total payoff is

P = δY1p + δY2p + · · ·
and our expected payoff is

E[P ] = E[δY1 ]p + E[δY2 ]p + · · ·
Since Yi = T1 + · · · + Ti, and the random variables

T1, . . . , Ti are independent and identically distributed, we have

E[δYi ] = E[δT1 · · · δTi ] = E[δT1 ] · · ·E[δTi ] = E[δT1 ]i

We define the “effective discount factor” to be δeff = E[δT1 ].
This lets us write the expected payoff as

E[P ] = δeffp + δ2
effp + · · · = p

δeff

1 − δeff

The probability density function for T1 is p(t) = λe−λt,
and so we have

δeff = E[δT1 ] =
∫ ∞

0

δtλe−λtdt =
λ

λ − log δ

Also, let P[0,τ ] be the payoff during some time interval
[0, τ ]. Then

E[P[0,τ ]] = (1 − δτ )E[P ] = (1 − δτ )p
δeff

1 − δeff

The proof involves checking the incentives of each node.
Each request has cost c for the node that services it, and benefit
b for the node that sent it. In the case of routing, a single
request may have to be serviced (forwarded) by several nodes.
Each node sends requests at rate λs, and receives requests at
rate λr. For routing, λr depends on how many other nodes are
using this node as a finger; for the incentives to work, we need
the gains to be large enough to offset the losses, even if this
node has to forward more than its fair share of the requests,
due to an unlucky configuration of the routing tables.

For a guilty node, dropping a request delays its recovery
(recall that punishment is measured in terms of time). This
delay time makes all the difference between following the
social norm, and deviating from it. The non-burstiness of the
requests is crucial; this is why we assumed that requests were
generated by a Poisson process. If multiple requests were to
arrive simultaneously, a node could drop all of them without



any additional penalty. But instead we ensure that a node has
some time to recover its reputation after dropping a request; so,
when a second request arrives, the node will have “something
to lose” if it drops the request.

Note that punishing a node by dropping a certain number of
requests does not create the right incentives. After dropping a
request, a node will continue to drop requests, until the time
when it sends its first request (which gets dropped). Time-
based punishment is preferable for this reason: it provides an
incentive for a node that has dropped a request to immediately
resume forwarding requests.

So the situation for a guilty node is as follows: At time 0,
we dropped a request and became guilty. Now, at time T1,
another request arrives. If we forward it, we will be forgiven
at time τ ; if we drop it, we will be forgiven no sooner than
time τ +T1. This will affect any requests that we send during
the interval [τ, τ +T1]. Note that all the other guilty nodes are
following the social norm, so they will be forgiven at time τ .

The expected payoff difference at time T1 between follow-
ing the social norm and deviating from it is

≥ −c + E[# of requests sent in [τ, τ + T1]]δτ b

= −c + λsE[T1]δτ b = −c +
λs

λr
δτ b

We need this to be ≥ 0, that is,

δτ ≥ λrc

λsb

Now consider the situation for an innocent node: The
decision of whether to forward a request at time 0 will affect
our payoffs during the interval [0, τ ]. Note that there may be
other guilty nodes during this time. If we forward the request,
we will stay innocent, gain b points each time we send a
request, and lose at most c points each time we receive a
request (this happens when the request is from an innocent
node). If we drop the request, we will become guilty, gain 0
points each time we send a request, and lose 0 or more points
each time we receive a request (we lose 0 points when the
request is from a guilty node).

Let δeffs and δeffr be the effective discount factors for
sending and receiving requests. The expected payoff difference
between following the social norm and deviating from it is

≥ −c + (1 − δτ )b
δeffs

1 − δeffs
− (1 − δτ )c

δeffr

1 − δeffr

= −c + (1 − δτ )b
λs

− log δ
− (1 − δτ )c

λr

− log δ

= −c + (1 − δτ )
λsb − λrc

− log δ

We need this to be ≥ 0, that is,

1
− log δ

≥ c

(1 − δτ )(λsb − λrc)

To set the parameters, we first fix γ = δτ , then fix δ, and
finally compute τ = lg γ/ lg δ.

If the sending and receiving rates are equal, λs = λr = 1,
and the benefit and cost are b = 4 and c = 2, then we get
something similar to Kandori’s random matching game, but
running in continuous time and with asymmetric requests. We
can set:

γ = 1/2
1

− log δ
≥ 2 =⇒ δ ≥ e−1/2, so choose δ = 2/3

τ = −1/ lg δ ≈ 1.71

In the case of the routing game, with 1024 nodes, we set
λs = 1 and λr = 10. (Each request takes 5.5 hops on average,
but we add some margin to allow for irregularities caused
by the particular configuration of the routing tables.) Say the
benefit and cost are b = 40 and c = 2. Then we can set:

γ = 1/2
1

− log δ
≥ 1/5 =⇒ δ ≥ e−5, so choose δ = 2/3

τ = −1/ lg δ ≈ 1.71

Note that, while these incentives are quite strong, they are
sensitive to noise and malicious nodes.

IV. SIMULATIONS OF THE ROUTING GAME

We ran simulations to measure the performance of the
social norm strategy in the routing game. In particular, we
observed: (1) how the presence of malicious nodes affects
the incentive to cooperate; (2) how noise and errors hurt the
global efficiency of the system; and (3) how an “unreliable”
reputation system can still provide strong incentives. We also
evaluated some possible “adversarial” strategies, and looked
at some scenarios involving mixed populations of high- and
low-rate nodes.

For simplicity, we simulated a game with discrete rounds,
where each node sends one request per round, and the nodes
are randomly shuffled before each round (so the order of
moves is random). This approximates a continuous-time game
where each node’s requests are generated by a Poisson process
with the same rate.

We chose c = 2 as the cost of forwarding a request, and b =
40 as the payoff when a request reaches its destination. Since
we did not have a specific application in mind, these values are
somewhat arbitrary, but we think they are at least plausible.
We ran simulations with 1024 nodes and 1000 rounds. Each
request took 5.5 hops on average, and the expected payoff per
request (assuming 100% cooperation) was 40 − 5.5 · 2 = 29.

Punishment was measured in terms of rounds, with the
reputations of the guilty nodes being decremented at the end
of each round. We used punishment periods τ = 1, τ = 2
and τ = 5. Note that with τ = 1, every guilty node will be
automatically forgiven at the end of the round; whereas with
τ = 2, a guilty node must cooperate for at least one full round
before it is forgiven.

Error bars on the graphs show the 99% confidence intervals.
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A. Simulation Results

1) Malicious Nodes: Because the social norm is only an
equilibrium, not a dominant strategy, it does not guarantee
that a given node will behave properly when some of the
other nodes are faulty or malicious. Indeed, malicious nodes
can cause the honest nodes to receive lower payoffs, thus
weakening the incentive to cooperate. Here we try to measure
this effect. We model malicious nodes as nodes that always
defect, called “defect unconditionally” or “Du” nodes. Nodes
that follow the social norm strategy are called “Sn” nodes.

Figure 1 shows the average payoff per request for the Sn and
Du nodes, as the number of Du nodes increases. Observe that
the payoffs of the Sn nodes drop significantly as the number
of Du nodes increases, while the payoffs of the Du nodes
remain small, because they are marked guilty by the reputation
system. The cross-over occurs when the population is roughly
40% Du nodes. Note that there is a kink in the Sn curve at the
right side of the graph; this is because when there are no Sn
players, the average payoff for the Sn strategy is 0 by default.

Figure 2 shows the global efficiency as the number of Du
nodes increases. (We define the global efficiency to be the
total payoff of all the nodes, divided by the total payoff in the
ideal case of 100% cooperation, no noise, etc.) The results are
similar with punishment periods τ = 1, τ = 2 and τ = 5.

2) Noise: We next consider the effect of noise or errors in
the system. Noise is harmful both because it causes requests to
get dropped, and because it triggers additional punishment. We
let pnoise be the probability that a node who tries to cooperate
will end up defecting instead (if, for instance, the request gets
dropped due to a network failure). In these simulations, we
use a network of all Sn nodes.

Figure 3 shows the global efficiency as the noise level
rises. Observe that the efficiency remains higher when we
use the shorter punishment period. This illustrates a trade-
off in choosing the punishment: longer punishments create
stronger incentives, but they reduce the system’s ability to
tolerate noise.
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Fig. 3. Global efficiency with varying levels of noise

3) An “Unreliable” Reputation System: Consider a repu-
tation system that is unreliable in the following sense: If a
node behaves properly, its reputation will always be updated
correctly; but if a node misbehaves, the incident will only be
detected with probability prel. This would describe a reputation
system that only observes a random sample of the activity in
the network.

We want to see whether an unreliable reputation system,
combined with a sufficiently severe punishment, can provide
adequate incentives. Here we simulate a network with a 10%
fraction of Du nodes. In figure 4 we plot the average payoff
per request for the Sn and Du nodes, varying the reliability
and using different punishment lengths.

Observe that the payoffs of the Sn nodes stay roughly
constant, while the payoffs of the Du nodes drop rapidly as the
reliability increases from 0. The reputation system is effective
even when the reliability is quite low, partly because our
punishments are strong, and partly because the Du nodes are
easy to catch. In this particular scenario, to ensure that the Du
nodes earn less than the Sn nodes, the reputation system must
be at least 10% reliable when using a 1-round punishment,
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Fig. 4. Payoff per request for Sn and Du nodes, varying the reliability of
the reputation scheme. Population is 10% Du nodes.

and at least 5% reliable when using a 5-round punishment.
4) Distribution of Payoffs among the Nodes: To gain fur-

ther insight into the effectiveness of an unreliable reputation
system, we look at the distribution of the payoffs among
the nodes. We assume a reputation system with fairly low
reliability (prel = 20%), but a fairly severe punishment (τ = 5).
We then vary the number of Du nodes, and plot the cumulative
distribution function (CDF) of the total payoffs of the Sn and
Du nodes (figure 5).

The payoffs of the Sn nodes have a fairly large variance.
This is due to the random choices of the routing tables: if a
node appears in many other nodes’ finger tables, it will have
to route many requests, reducing its own payoff. Also, an Sn
node whose longest finger happens to be a Du node will do
very poorly, as half of its requests will be dropped.

The payoffs of the Du nodes, on the other hand, are con-
centrated close to zero. (Note that, unlike Sn nodes, Du nodes
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Fig. 5. CDF of the total payoffs of the Sn and Du nodes, with reliability
prel = 20% and punishment τ = 5

never have negative payoffs.) This shows that the reputation
system is effective.

B. Other Strategies

1) Social Norm with Random Defections: Another possible
strategy is the social norm with random defections, denoted
Snr:

• If the opponent is innocent, then cooperate with prob-
ability 1 − pdef and defect with probability pdef; if the
opponent is guilty, then defect.

Note that setting pdef = 0 gives the Sn strategy, while setting
pdef = 1 gives the Du strategy. Typically we would choose
an intermediate value, say pdef = 0.2. The intuition here is
that an unreliable reputation system will have trouble detecting
occasional defections. So, although Snr is less aggressive than
Du, it may do better because it can avoid punishment.
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Fig. 6. CDF of the total payoffs of the Sn and Snr nodes (with pdef = 20%),
with reliability prel = 20% and punishment τ = 5

To evaluate the performance of Snr (with pdef = 20%), we
again assume a reputation system with reliability prel = 20%
and punishment τ = 5. We vary the number of Snr nodes,
and plot the cumulative distribution function (CDF) of the
total payoffs of the Sn and Snr nodes. (See figure 6.)

The payoffs of the Snr nodes vary substantially, which
indicates that they are not being consistently punished by the
reputation system. However, the average payoff remains small;
evidently the punishment is sufficiently severe that it wipes out
any gains from the occasional defections.

2) Mixed Population of High- and Low-Rate Nodes: Thus
far we have assumed that all nodes send requests at the same
rate. But a real network may be heterogenous, with some
nodes sending more requests than others. These nodes will
receive higher payoffs, while imposing additional costs on
their neighbors. In extreme cases, this can cause other nodes
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Fig. 7. Payoff per request for the Sn-High and Sn-Low nodes, varying the
numbers of Sn-High and Sn-Low nodes
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Fig. 8. CDF of the total payoffs of the Sn-High and Sn-Low nodes, for some
specific cases

to get negative payoffs, destroying their incentive to cooperate.
This limits the amount of heterogeneity that can be tolerated.
We ran some simulations to measure this effect.

We considered a simple scenario with two classes of nodes:
high-rate nodes (denoted Sn-High) and low-rate nodes (Sn-
Low). Both of these classes practice the social norm, but in
each round an Sn-High node makes a request with probability
phigh, while an Sn-Low node makes a request with probability
plow.

Figure 7 shows the average payoff per request for the Sn-
High and Sn-Low nodes, using various values of phigh and plow.
The population consists of a fraction f of Sn-Low nodes and
a fraction 1 − f of Sn-High nodes, and we vary f along the
horizontal axis. Note that the reputation system does not play
any role, since all the nodes are following the social norm.
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Fig. 9. CDF of the total payoffs of the Sn-High and Sn-Low nodes, for
small numbers of “adversarial” Sn-High nodes

As we increase the number of Sn-Low nodes, the payoff
per request increases for everyone; this is because each node
now has to forward fewer requests for the other nodes. As
for the incentives of the Sn-Low nodes, problems arise when
there are very few Sn-Low nodes, and they send requests at
a very low rate. In extreme cases, the payoffs of the Sn-Low
nodes become negative.

Figure 8 shows the distribution of the total payoffs among
the nodes, for some specific scenarios. The two classes are
clearly visible. Note that some Sn-Low nodes in the lower
tail of the distribution have negative payoffs; these are the
“unlucky” nodes that were chosen to be the fingers of the
Sn-High nodes. Because of the finger tables, the cost of an
Sn-High node is not spread equally over the network, but falls
disproportionately on a small number of neighboring nodes.
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Fig. 10. Some open issues and possible adversarial strategies

3) Sn-High as an Adversarial Strategy: Our reputation
system does not limit the number of requests that a node
can send; as long as it continues to forward other nodes’
requests, a node is free to send as many requests as it likes,
thus maximizing its payoff. Thus, Sn-High, sending requests at
very high rates, can be viewed as an adversarial strategy. This
may not be completely realistic, since in many applications a
node only needs to make a certain number of requests, and
cannot benefit more from sending additional requests; we will
discuss this later.

We ran some simulations to measure the effect of a small
number of “adversarial” Sn-High nodes on the network (figure
9). Here we set phigh = 0.9 to represent the high-rate nodes,
and plow = 0.15 to represent the “ordinary” nodes. Although
the Sn-High nodes are sending requests at a very high rate,
there are relatively few of them, and we find that they do
not dominate the behavior of the network. However, they do
have a major impact on the small set of Sn-Low nodes that
serve as their fingers. This can be seen in the lower tail of the
distribution, which has negative payoffs. It appears that our
incentives still work when Sn-High nodes make up perhaps
10% of the population, but they fail sometime after that point.

V. DISCUSSION

In this section we discuss some open issues regarding the
routing game and the social norm strategy. We describe some
attacks that could be carried out in a real system, and some
solutions. Note that many of our remarks apply to general peer-
to-peer systems, not just peer-to-peer routing. These issues are
summarized in Figure 10. Finally, we sketch some different
approaches to implementing a real reputation system, and we
discuss some related work.

A. Open Issues in the Routing Game / Social Norm

1) Reputation System Does Not Track Resource Usage:
A basic characteristic of our reputation system is that it does
not keep track of how many requests each node sends. This
is different from a monetary scheme, where each node pays
for every request it sends. Intuitively, this means that our rep-
utation system works best when the network is homogenous:
all nodes send requests at the same, steady rate, and they all
choose destinations uniformly at random. If these conditions
do not hold, our reputation system can fail, and one may have
to use a monetary scheme to obtain the desired incentives.

On the other hand, our reputation system does have an
advantage over a monetary scheme: it only has to keep track of
the guilty nodes, and only requires action when a request gets
dropped; whereas a monetary scheme must keep track of all
the nodes, and requires action each time a request is forwarded.
So our reputation system may be faster in the common case
(assuming most nodes are honest). This illustrates what seems
to be a trade-off between the quality of the incentives and
the amount of communication overhead. Here we will focus
on the incentives; we will revisit the performance issues in
section V-B.

We describe two attacks that exploit the above weakness
in our reputation system. First, a node can cheat by sending
its requests in batches, so that it only needs to maintain a
good reputation when it is sending a batch. Note that this
attack would not work in some applications, since it delays
the servicing of requests.

One possible solution is to punish a guilty node by dropping
a certain number of its requests. But this does not work; a
guilty node can “fake” its punishment by sending a string of
worthless requests to be dropped. Time-based punishment still
seems to be the most effective.

A better idea is to make the reputations “sticky,” so that
if a node is consistently good or consistently bad, then it
takes a sustained change in behavior to cause a change in
its reputation. This is a little bit like a monetary scheme, but
without exact bookkeeping. This scheme is attractive because
it punishes bad nodes that cooperate only when they have a
batch of requests to send, and it tolerates good nodes that suffer
from occasional bursts of noise. However, this scheme could
be harder to implement, since the reputation system would
have to maintain more state information for each node.

The second attack is even simpler: a node can increase
its payoff simply by sending more requests (the Sn-High
strategy). However, this attack is constrained by the fact that,
in many real applications, each node only has a certain number
of requests to send, and does not benefit by sending more than
this number.

2) Social Norm is Not a Dominant Strategy: Recall that
the social norm is only a (subgame-perfect) equilibrium, not
a dominant strategy, and so it may not be in a node’s best
interest to follow the social norm if other nodes are deviating
from it. In other words, misbehaving nodes can destroy their
neighbors’ incentives to cooperate.

This leads us to consider adaptive strategies, where a node
observes the behavior of its neighbors, and chooses its own
actions accordingly. For instance, a node might initially follow
the social norm, but switch to Du (always defect) if one of
its fingers turns out to be a Du node, or if it ends up being a
finger of an Sn-High node.

In practice, however, this may not be such a serious prob-
lem. In a real peer-to-peer network, the same mechanisms
that improve performance and reliability also help prevent
misbehaving nodes from destroying the incentives of honest
nodes. For example, load-balancing mechanisms distribute the
burden of an Sn-High node over many other nodes, while



failure recovery mechanisms allow good nodes to bypass or
route around a Du node.

3) Untrusted Reputations: In a real network, reputations
cannot be implemented entirely by a trusted third party. At the
very least, one would have to rely on the nodes themselves to
report when their requests are dropped. This creates incentive
problems. For instance, one node might falsely accuse those
nodes who are using it as a finger, so that it can drop their re-
quests. Also, a group of nodes might collude to produce many
independent reports against the same node. If the reputation
system is not secure, nodes might even try to tamper with their
reputations directly.

We think these problems can be solved using a combination
of incentives (to encourage nodes to report truthfully), and a
reputation system that resists tampering by small groups of
nodes. We will discuss this further in section V-B.

4) Other Limitations: There are many details involving the
implementation of a peer-to-peer network that are not modeled
by our game. We assumed a very simple network topology and
traffic model. We did not model nodes joining and leaving the
network. Also, in the game, nodes are only allowed to choose
between cooperating and defecting; whereas in real life, a node
can do other things, such as forwarding a request incorrectly.
And, in a real system, the utility function of each node may
be more complicated than in our simple model.

5) Outside Communication: Finally, we did not consider
how nodes might exploit information or communication chan-
nels that lie “outside” of the game. A well-known example is
the Sybil attack, where a single entity controls multiple nodes
on the network [9]. Alternatively, multiple entities could join
together to form a “club,” which controls a single node on the
network. These techniques could be used for load-balancing,
by splitting up high-rate nodes and joining together low-rate
nodes to make the network more homogenous. But they can
also be abused, for instance if several medium-rate nodes join
together to form a high-rate node that floods the network with
requests.

More generally, nodes might use outside communication to
organize a collusion, or they might build their own overlay
network on top of the peer-to-peer system. This kind of
behavior is, almost by definition, hard to regulate, and so this
could be a very serious issue.

B. Implementing a Reputation System

In this paper we have studied an abstract model of a
reputation system, which uses a trusted third party. This model
is convenient for analyzing incentives. We now sketch out
some possible approaches to implementing this model in a
real peer-to-peer system.

1) Central Authority: The first approach is to simply build
a central authority which runs the reputation system. This
is the most direct approach, and it avoids many of the
difficulties with managing trust in a distributed system. Like
any centralized solution, this approach may have problems
with performance and scalability; but we think these problems

are not as severe as many people assume. Here we present
some ideas for improving performance and scalability.

The first task of the reputation system is to observe activity
in the network. As mentioned earlier, the central authority
would have to rely on the nodes to report when their requests
get dropped. Since bad behavior is relatively infrequent, this
should not consume too much bandwidth.

The problem of nodes submitting false reports can be dealt
with in two ways. One approach is to partition the network in
such a way that, whenever a node has an opportunity to accuse
another node of misbehavior, it has no ulterior motive to do
so [10]. Another approach is to require multiple independent
reports before marking a node guilty; this protects against
tampering by individual nodes or small coalitions. One can
easily devise more elaborate rules along these lines to judge
whether a node is guilty.

The second task of the reputation system is to disseminate
reputation information to the nodes. We propose using a
“blacklist,” which is simply a list of the guilty nodes, and
thus should be quite short. Observe that it is not necessary
to distribute the blacklist to all the nodes: when a guilty
node sends a request, the request takes multiple hops, and
we only need to ensure that the request gets dropped on one
of those hops. So, for instance, one could send the blacklist to
a random subset of the nodes. Alternatively, one could exploit
the topology of the network, and send the blacklist to the
fingers of the guilty nodes. Yet another idea is to make use of
the Chord stabilization protocol to eject guilty nodes from the
Chord ring. These ideas have not been fully explored.

Finally, we point out that dropping requests is a good way
to apply punishment, even in the context of incentive problems
that have nothing to do with routing. For instance, in a file-
sharing application, it may be easiest to drop requests while
they are being forwarded through the network, rather than
trying to deny those requests at their destinations. Because
routing requires multiple hops, it can be easily disrupted,
which provides a natural opportunity to carry out punishment.

2) Distributed Implementations: For distributed reputation
systems, scalability is less of a concern, while trust manage-
ment becomes a serious problem: how to build a trustwor-
thy reputation system, when the individual nodes cannot be
trusted? One approach is to replicate the reputation system
over a set of independent nodes, the majority of which should
be honest. This approach is used by Karma [14], described
in the next section. Essentially, this amounts to using sets
of nodes to simulate a trusted authority. It works, but it has
significant complexity and performance overhead.

Another approach is to discard the notion of “reputation”
in favor of some other mechanism to provide incentives. For
example, Samsara [15] and Sharp [16], described below, are
based on bartering economies. One could also imagine more
exotic systems, where there are no well-defined reputations,
but individual nodes can organize themselves to carry out
large-scale punishment against misbehaving nodes. These are
interesting ideas, and they could have good performance and
scalability. Because they work so differently, however, they



are not directly comparable to our simple reputation system.

C. Related Work

A preliminary version of this paper appeared in [11]. It had
some simulations of malicious nodes and noise, but not the
proof of equilibrium and not the simulations of adversarial
strategies.

There have been many studies of peer-to-peer networks
using game theory. Lai et al [12] use the evolutionary Pris-
oner’s Dilemma as a model for file sharing. They study
strategies based on private and shared history, and strategies
that adapt to the behavior of strangers. Ranganathan et al [13]
use the multiple-player Prisoner’s Dilemma as a model for
file sharing. They investigate some different reputation and
monetary schemes.

Also, a number of systems that use incentives have been
proposed. Karma [14] is a monetary scheme, used for peer-
to-peer file sharing. Each node has a bank account, which is
implemented by a set of the other nodes, called its “bank set.”
This approach is flexible and decentralized, but has substantial
overhead. As far as we know, Karma was never actually
implemented and tested.

Samsara [15] is a peer-to-peer storage system, that requires
each node to contribute as much disk space to the system as it
is using. Samsara allows “claims” to storage space, which are
incompressible blocks of data. Claims can be traded, allowing
the nodes to form asymmetric or transitive relationships. This
solution requires no central authority, but it only works for
storage applications.

Sharp [16] is a system for distributed resource management
over the Internet. It allows trading of computational resources,
which leads to a barter economy, without any central authority.
However, Sharp is designed to manage resources at the level
of autonomous systems, and is less suitable for peer-to-peer
networks. In particular, Sharp assumes long-lived relationships
among the nodes.

Finally, Castro et al [17] studied a variety of attacks on peer-
to-peer routing, and proposed some solutions using techniques
in cryptography and security. Their approach is complemen-
tary to ours: they focus on constructing “hard” defenses
against malicious nodes, whereas we focus on providing “soft”
incentives for rational, self-interested nodes.

VI. CONCLUSIONS

In this paper we used a random-matching game to model
routing in peer-to-peer networks. We defined an analogue
of Kandori’s “social norm” strategy, which uses a simple
reputation system to provide incentives for cooperation. Under
certain assumptions, this strategy is a stable subgame-perfect
equilibrium. Our simulation results showed that this scheme is
robust in the presence of malicious nodes and noise (though
there is a tradeoff between having strong incentives and
tolerating noise). We also showed that an unreliable reputation
system which monitors only a fraction of the routing events
can still be effective, provided that the punishments are suffi-
ciently severe. In addition, we ran simulations of some possible

adversarial strategies. Finally, we described some attacks that
could occur in a real system, and suggested some ideas for
how our reputation system might be implemented in practice.

Although our model does not capture all aspects of a
real network, we feel that it is a useful starting point for
understanding the incentive problems that arise in peer-to-peer
routing. One area of future work is to develop more realistic
games that model different aspects of peer-to-peer systems.
We also need to understand what exactly we are trying to
accomplish: what kinds of attacks should we worry about, how
rational are the users of peer-to-peer systems, and so forth.

Another area of work is to explore different approaches
to implementing real reputation systems for peer-to-peer net-
works. We do not have much experience in this area. There are
difficult tradeoffs in building a reputation system that is secure,
provides the right incentives, and has good performance and
scalability.
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