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Abstract. We introduce a system for sensing complex social systems with data 
collected from one hundred mobile phones over the course of six months.  We 
demonstrate the ability to use standard Bluetooth-enabled mobile telephones to 
measure information access and use in different contexts, recognize social pat-
terns in daily user activity, infer relationships, identify socially significant loca-
tions, and model organizational rhythms.   

1    Introduction 

The last ten years could rightly be coined the decade of the mobile phone. In 2004, 
over 600 million handsets were sold, dwarfing the number of personal computers sold 
that year [22]. The potential functionality of this ubiquitous infrastructure of mobile 
devices is dramatically increasing. In this paper we describe how data collected from 
mobile phones can be used to uncover regular rules and structure in behavior of both 
individuals and organizations. We begin with a discussion of the rationale for using 
phones as wearable sensors and the type of data they can collect. Subsequently we 
describe the benefits of fusing information from cell towers with discovered Blue-
tooth IDs, and incorporate this into models of individual users. The initial results of 
our ongoing user study on phone usage and communication patterns are discussed. 
Turning our attention away from individuals and toward dyads, we extract salient 
features indicative of the relationships between subjects using proximity, time, and 
location data. Finally, with the nodes and edges of this social network identified, the 
concept of organizational rhythms is introduced as useful metric for quantifying or-
ganizational behavior.  

2    Mobile Phones as Wearable Sensors 

For over a century social scientists have conducted surveys to learn about human 
behavior. Surveys are plagued with issues however, such as bias, sparsity of data, and 
lack of continuity between discrete questionnaires.  It is this absence of dense, con-
tinuous data that also hinders the machine learning and agent-based modeling com-
munities from constructing more comprehensive predictive models of human dynam-
ics. Over the last two decades these has been a significant amount of research at-
tempting to address these issues by building location-aware devices capable of col-
lecting rich behavioral data [18]. While these projects were relatively successfully, by 
depending on a limited supply of custom hardware, they were unable to scale to 



 
groups of greater size. However, with the rapid technology adoption of mobile 
phones comes an opportunity to collect a much larger dataset on human behavior [7, 
13]. The very nature of mobile phones makes them an ideal vehicle to study both 
individuals and organizations: people habitually carry their mobile phones with them 
and use them as a medium for much of their communication. In this paper we capture 
all the information to which the phone has access (with the exception of content from 
phone calls or text messages) and describe how it can be used to provide insight into 
both the individual and the collective. 

 2.1 Mobile Phone Proximity Logs 

One of the key ideas in this paper is to exploit the fact that modern phones use both a 
short-range RF network (e.g., Bluetooth) and a long-range RF network (e.g., GSM), 
and that the two networks can augment each other for location and activity inference. 
The idea of logging cell tower ID to determine approximate location will be familiar 
to readers, but the idea of logging Bluetooth devices is relatively recent and provides 
very different types of information [11].  

Bluetooth is a wireless protocol in the 2.40-2.48 GHz range, developed by Erics-
son in 1994 and released in 1998 as a serial-cable replacement to connect different 
devices. Although market adoption has been initially slow, according to industry 
research estimates, by 2006 90% of PDAs, 80% of laptops, and 75% of mobile 
phones will be shipped with Bluetooth [23].  Every Bluetooth device is capable of 
‘device-discovery’, which allows them to collect information on other Bluetooth 
devices within 5-10 meters.  This information includes the Bluetooth MAC address 
(BTID), device name, and device type. The BTID is a hex number unique to the par-
ticular device. The device name can be set at the user’s discretion; e.g., “Tony’s 
Nokia”. Finally, the device type is a set of three integers that correspond to the device 
discovered; e.g.,  Nokia mobile phone, or IBM laptop. 

To log BTIDs we designed a software application, BlueAware, that runs passively 
in the background on MIDP2-enabled mobile phones. Bluetooth was primarily de-
signed to enable wireless headsets or laptops to connect to phones, but as a by-
product, devices are becoming aware of other Bluetooth devices carried by people 
nearby. Our application records and timestamps the BTIDs encountered in a prox-
imity log and makes them available to other applications, similar to the Jabberwocky 
project developed by Paulos et al. [14]. BlueAware is automatically run in the back-
ground when the phone is turned on, making it essentially invisible to the user.  
 

  
Fig. 1 Methods of detecting Bluetooth devices. BlueAware running in the foreground on a 

Nokia Series 60 phone (left).  Bluedar, a Bluetooth beacon coupled with a WiFi bridge (right). 

 



 
A variation on BlueAware is Bluedar. Bluedar was developed to be placed in a social 
setting and continuously scan for visible devices, wirelessly transmitting detected 
BTIDs to a server over an 802.11b network.  The heart of the device is a Bluetooth 
beacon designed by Mat Laibowitz incorporating a class 2 Bluetooth chipset that can 
be controlled by an XPort web server [10]. We integrated this beacon with an 
802.11b wireless bridge and packaged them in an unobtrusive box. An application 
was written to continuously telnet into multiple BlueDar systems, repeatedly scan for 
Bluetooth devices, and transmit the discovered proximate BTIDs to our server. Be-
cause the Bluetooth chipset is a class 2 device, it is able to detect any visible Blue-
tooth device within a working range of up to twenty-five meters. We are currently 
using the system to prototype a proximity-based introduction service [6]. 
 
Refresh Rate vs. Battery-Life. Continually scanning and logging BTIDs can expend 
an older mobile phone battery in about 18 hours.1  While continuous scans provide a 
rich depiction of a user's dynamic environment, most individuals expect phones to 
have standby times exceeding 48 hours. Therefore BlueAware was modified to only 
scan the environment once every five minutes, providing at least 36 hours of standby 
time. 

2.2 Privacy Implications 

Mining the reality of our one hundred users raises justifiable concerns over privacy.   
However, the work in this paper is a social science experiment, conducted with hu-
man subject approval and consent of the users. Outside the lab we envision a future 
where phones will have greater computation power and will be able to make relevant 
inferences using only data available to the user’s phone. In this future scenario, the 
inferences are done in real-time on the local device, making it unnecessary for private 
information to be taken off the handset.  However, the computational models we are 
currently using cannot be implemented on today's phones. Thus, our results aim to 
show the potential of the information that can be gleaned from the phone, rather than 
presenting a system that can be deployed today outside the realm of research.  

2.3 The Dataset 

Our study consists of one hundred Nokia 6600 smart phones pre-installed with sev-
eral pieces of software we have developed as well as a version of the Context applica-
tion from the University of Helsinki [15]. Seventy-five users are either students or 
faculty in the MIT Media Laboratory, while the remaining twenty-five are incoming 
students at the MIT Sloan business school adjacent to the laboratory. Of the seventy-
five users at the lab, twenty are incoming masters students and five are incoming MIT 
freshman. The information we are collecting includes call logs, Bluetooth devices in 
proximity, cell tower IDs, application usage, and phone status (such as charging and 
idle), which comes primarily from the Context application. The study will generate 
data collected by one hundred human subjects over the course of nine months and 
represent approximately 500,000 hours of data on users' location, communication and 
device usage behavior.2 Upon completion of the study, we plan to release a public, 
anonymous version of the data set for other researchers to use. 

                                                           
1 Using a 6-month old battery of a Nokia 6600 in a sparsely populated Bluetooth environment  
2 At the time of submission one hundred human subjects have been participating in the study 

for time periods ranging from two to seven months, representing over 250,000 hours of data. 



 
3   User Modeling: Identifying Structure in Routine 

Although humans have the potential for relatively random patterns of behavior, there 
are easily identifiable routines in every person's life. These can be found on a range of 
timescales: from the daily routines of getting out of bed, eating lunch, and driving 
home from work, to weekly patterns such as the Saturday afternoon softball games, to 
yearly patterns like seeing family during the holidays in December. While our ulti-
mate goal is to create a predictive classifier that can perceive aspects of a user's life 
more accurately than a human observer (including the actual user), we begin by build-
ing simple mechanisms that can recognize many of the common structures in the 
user's routine.  Learning the structure of an individual’s routine has already been 
demonstrated using other modalities, however we present this analysis as a founda-
tion which will then be extended to demonstrate the learning of social structures.  

We begin with a simple model of behavior in three states: home, work, and else-
where. The data are obtained from Bluetooth, cell tower, and temporal information 
collected from the phones. We then incorporate information from static Bluetooth 
devices (class 1, such as desktop computers), using them as 'cell towers' to identify 
significant locations and localize the user to a ten meter radius. We show that most 
users spend a significant amount of time in the presence of static Bluetooth devices, 
particularly when they don't have cell tower reception (e.g., inside the office build-
ing). This makes them an ideal supplement to cell towers for location classification.  

3.1 Location based on cell towers and Bluetooth 

There has been a significant amount of research which correlates cell tower ID with a 
user's location [2, 3, 8]. For example, Laasonen et al. describe a method of inferring 
significant locations from cell tower information through analysis of the adjacency 
matrix formed by proximate towers. They were able to show reasonable route recog-
nition rates, and most importantly, succeeded in running their algorithms directly on 
the mobile phone [9]. 

Obtaining accurate location information from cell towers is complicated by the fact 
that phones can detect cell towers that are several miles away.  Furthermore, in urban 
areas it is not uncommon to be within range of more than a dozen different towers. 
The inclusion of information about all the current visible towers as well as their re-
spective signal strengths would help solve the location classification problem, al-
though multipath distortion may still confound estimates.  

We observe that relatively high location accuracy may also be achieved if the user 
spends enough time in one place to provide an estimate of the cell tower probability 
density function. Phones in the same location can be connected to different cell towers 
at different times depending on a variety of variables including signal strength and 
network traffic.  Thus, over time each phone 'sees' a number of different cell towers, 
and the distribution of detected towers can vary substantially with even small changes 
in location. Figure 2 shows the distribution of cell towers seen for a given area with a 
10m radius. Towers were only included in these distributions if the common area's 
static Bluetooth desktop computer was also visible, ensuring the users' location within 
10m (or less). Discrepancies in the distributions are attributed to the users' typical 
position within the 10m radius. Users 2 and 4 both share a window office and have 
virtually the same cell tower distribution, despite having a very different distribution 
of hours spent in the office (as verified by the Bluetooth and cell tower logs).  Users 1 

                                                                                                                                           
The total duration of the study will be for nine months, and all users will have been enrolled 
for at least six months. 



 
and 5 both spend the majority of their time in the common area away from the win-
dows and see only half as many towers as the others. User 3 is in a second office in 
the same area, and has a distribution of cell towers that is intermediate between the 
two other sets of users. 
 

 
Fig 2. The probability distribution of seeing twenty-five cell towers from the third floor corner 
of an office building using 150 hours of data from each of five users. (Ranged was assured to 

10m by the presence of a static Bluetooth device.) 

Despite progress in mapping cell tower to location, the resolution simply cannot be as 
high as many location-based services require. GPS is an alternative approach that has 
been used for location detection and classification [1, 12, 19], but the line-of-sight 
requirements prohibit it from working indoors. We have therefore incorporated the 
use of static Bluetooth device ID as an additional indicator of location, and shown 
that it provides a significant improvement in user localization, especially within office 
environments. This fusion of data is particularly appropriate since areas where cellu-
lar signals are weak, such as in the middle of large buildings, often correspond to 
places where there are many static Bluetooth devices, such as desktop computers. On 
average, the subjects in our study were without mobile phone reception 6% of the 
time. When they did not have reception, however, they were within range of a static 
Bluetooth device or another mobile phone 21% and 29% of their time, respectively. 
We expect coverage by Bluetooth devices to increase dramatically in the near future 
as they become more common in computers and electronic equipment.  

We believe Bluetooth ID may become as important as cell tower mapping for es-
timation of user location. Figure 3 below shows the ten most frequently detected 
Bluetooth devices for one subject averaged over the month of January. This figure not 
only provides insight into the times the user is in his office (from the frequencies of 
the top 'Desktop'), but as mentioned in Section 4, also the type of relationship with 
other subjects. For example, the figure suggests the user leaves his office during the 
hour of 14:00 and becomes increasingly proximate to Subject 4. Judging from the 
strong cutoffs at 9:00 and 17:00, it is clear this subject had very regular hours during 
the month, and thus has fairly predictable high-level behavior. This "low entropy" 
behavior is also depicted in Figure 4. 

 
 



 

 
Fig 3. The number of Bluetooth encounters for Subject 9 over the month of January 

3.2 Models to Identify Location and Activity 

Human life is inherently imbued with routine across all temporal scales, from minute-
to-minute actions to monthly or yearly patterns. Many of these patterns in behavior 
are easy to recognize, however some are more subtle. We attempt to quantify the 
amount of predictable structure in an individual's life using an entropy metric. People 
who live high-entropy lives tend to be more variable and harder to predict, while low-
entropy lives are characterized by strong patterns across all time scales. Figure 4 de-
picts the patterns in cell tower transitions and the total number of Bluetooth devices 
encountered each hour during the month of January for Subject 9, a 'low entropy' 
subject.  

 

 Fig 4. Subject 9's 'low entropy' daily distribution of home/work transitions and Blue-
tooth devices. The 'hot spot' in mid-day is when the subject is at the workplace. 

 
It is clear that the subject is typically at home during the evening and night until 8:00, 
when he commutes in to work, and then stays at work until 17:00 when he returns 
home. We can see that almost all of the Bluetooth devices are detected during these 
regular office hours, Monday through Friday. This is certainly not the case for many 
of the subjects. Figure 5 displays a different set of behaviors for Subject 8. The sub-
ject has much less regular patterns of location and in the evenings has other mobile 
devices in close proximity. We will use contextualized information about proximity 
with other mobile devices to infer relationships, described in section 4.2.  

 



 

 
Fig 5. Subject 4's 'high entropy' daily distribution of home/work transitions and 

Bluetooth devices. 
 

 
One similarity between the two different behaviors above is the clear role time plays 
in determining user behavior. To account for this, we have developed a simple Hid-
den Markov Model conditioned on both the hour of day as well as weekday or week-
end. A straightforward Expectation-Maximization inference engine was used to learn 
the parameters in the model, and performed clustering in which we defined the di-
mensionality of the state space. After training our model with one month of data from 
several subjects we were able to provide a good separation of ({office}, {home}, 
{elsewhere}) clusters, typically with greater than 95% accuracy. Examination of the 
data shows that non-linear techniques will be required to obtain significantly higher 
accuracy.  However, for the purposes of the next two sections, this accuracy has 
proven sufficient. In future work we hope to leverage the information within LifeNet 
[17] to create more specific interferences about activity. 
 

 
Fig 6. A Conditioned Hidden Markov Model for situation identification. The model 
was designed to be able to incorporate many additional observation vectors such as 

devices nearby, traveling, sleeping and talking on the phone. 



 
3.4 Mobile Usage Patterns in Context 

Capturing mobile phone usage patterns of one hundred people for an extended period 
of time can provide insight into both the users as well and the ease of use of the de-
vice itself. For example, 35% of our subjects use the clock application on a regular 
basis (primarily to set the alarm clock and then subsequently to press snooze) yet it 
takes 10 keystrokes to open the application from the phone's default settings. Not 
surprisingly, specific applications, such as the alarm clock, seem to be used much 
more often at home rather than at work. Figure 7 is a graph of the aggregate popular-
ity of the following applications when both at home and at work. It is interesting to 
note that despite the subjects being technically savvy, there was not a significant 
amount of usage of the sophisticated features of the phone - indeed the default game 
"Snake" was used just as much as the elaborate Media Player application.  
 
 

 
Fig 7. Average application usage of 100 subjects with location 

While there is much to be gained from a contextual analysis of new application usage, 
perhaps the most important and still most popular use of the mobile phone is as a 
communication device. Figure 8 is a break down of the different types of usage pat-
terns from a selection of the subjects. Approximately 81% of communication on the 
phone was completed by placing or receiving a voice call. Data (primarily email) was 
at 13% of the communication, while text messaging was 5%.  
 

 
Fig 8. Average communication mediums for a sample of 90 subjects 

Learning user's application routines can enable the phone to place a well-used appli-
cation in more prominent places, for example, as well as creating a better model of 
the behavior of an individual [20]. As we shall show in Section 4, these models can 
also be augmented with additional information about a user's social context.  



 
3.5 Data Characterization and Validation 

The following section describes how errors may be introduced into the data through 
data corruption, device detection failures, and most significantly, through human 
error.   
 
Data Corruption. All the data from a phone are stored on a flash memory card, which 
has a finite number of read-write cycles. Initial versions of our application wrote over 
the same cells of the memory card. This led to failure of a new card after about a 
month of data collection, resulting in the complete loss of data. When the application 
was changed to store the incremental logs in RAM and subsequently write each com-
plete log to the flash memory, our data corruption issues virtually vanished. However, 
ten cards were lost before this problem was identified, destroying portions of the data 
collected during the months of September and October for six Sloan students and four 
Media Lab students.  

 
Bluetooth Errors. One central intent of this research is to verify the accuracy of auto-
matically collected data from mobile phones for quantifying social networks. We are 
facing several technical issues. The ten meter range of Bluetooth along with the fact 
that it can penetrate some types of walls, means that people not physically proximate 
may incorrectly be logged as such. By scanning only periodically every five minutes, 
shorter proximity events may also be missed. 

Additionally, there is a small probability (between 1-3% depending on the phone) 
that a proximate, visible device will not be discovered during a scan. Typically this is 
due to either a low level Symbian crash of an application called the "BTServer", or a 
lapse in the device discovery protocol. The BT server crashes and restarts approxi-
mately once every three days (at a 5 minute scanning interval) and accounts for a 
small fraction of the total error. However, to detect other subjects, we can leverage 
the redundancy implicit in the system. Because both of the subjects' phones are actu-
ally scanning, the probability of a simultaneous crash or device discovery error is less 
than 1 in 1000 scans. 

In our tests at MIT, we have empirically found that these errors have little effect on 
the extremely strong correlations between interaction (survey data) and the 10m Blue-
tooth proximity information.  These problems therefore produce a small amount of 
'background noise' against which the true proximity relationships can be reasonably 
measured.  However, social interactions within an academic institution are not neces-
sarily typical of a broader cross-section of society and the errors may be more severe 
or more patterned. If testing in a more general population shows that the level of 
background noise is unacceptable, there are various technical remedies available.  For 
instance, the temporal pattern of BTID logs allows us to identify various anomalous 
situations.  If someone is not involved in a specific group conversation but just walk-
ing by, then they will often enter and leave the log at a different time than the mem-
bers of the group.  Similar geometric and temporal constraints can be used to identify 
other anomalous logs.   

 
Human Induced Errors. The two primary types of human-induced errors in this data-
set result from the phone either being off, or separated from the user. The first error 
comes from the phone being either explicitly turned off by the user or exhausting the 
batteries. According to our collected survey data, users report exhausting the batteries 
approximately 2.5 times each month. One fifth of our subjects manually turn the 
phone off on a regular basis during specific contexts such as classes, movies, and 
(most frequently) when sleeping. Immediately before the phone powers down, the 



 
event is timestamped and the most recent log is closed. A new log is created when the 
phone is restarted and again a timestamp is associated with the event. 

A more critical source of error occurs when the phone is left on, but not carried by 
the user. From surveys, we have found that 30% of our subjects claim to never forget 
their phones, while 40% report forgetting it about once each month, and the remain-
ing 30% state that they forget the phone approximately once each week.  Identifying 
the times where the phone is on, but left at home or in the office presents a significant 
challenge when working with the dataset. To grapple with the problem, we have cre-
ated a 'forgotten phone' classifier. Features included staying in the same location for 
an extended period of time, charging, and remaining idle through missed phone calls, 
text messages and alarms. When applied to a subsection of the dataset which had  
corresponding diary text labels, the classifier was able to identify the day where the 
phone was forgotten, but also mislabeled a day when the user stayed home sick. By 
ignoring both days, we risk throwing out data on outlying days, but have greater cer-
tainty that the phone is actually with the user. A significantly harder problem is to 
determine whether the user has temporarily moved beyond ten meters of his or her 
office without taking the phone. Empirically, this appears to happen with many sub-
jects on a regular basis and there doesn't seem to be enough unique features of the 
event to accurately classify it.  However, as described in the survey comparison sec-
tion, this phenomenon does not diminish the extremely strong correlation between 
detected proximity and self-report interactions. Lastly, as discussed in the relationship 
inference section, while frequency of proximity within the workplace can be useful, 
the most salient data comes from detecting a proximity event outside MIT, where 
temporarily forgetting the phone is less likely to repeatedly occur.  

 
Missing Data. Because we know when each subject began the study, as well as the 
dates that have been logged, we can know exactly when we are missing data. This 
missing data is due to two main errors discussed above: data corruption and powered-
off devices. On average we have logs accounting for approximately 85.3% of the time 
since the phones have been deployed. Less than 5% of this is due to data corruption, 
while the majority of the missing 14.7% is due to almost one fifth of the subjects 
turning off their phones at night. 

 
 Surveys & Diaries vs. Phone Data. In return for the use of the Nokia 6600 phones, 
students have been asked to fill out web-based surveys regarding their social activities 
and the people they interact with throughout the day. Comparison of the logs with 
survey data has given us insight into our dataset’s ability to accurately map social 
network dynamics.  Through surveys of approximately forty senior students, we have 
validated that the reported frequency of (self-report) interaction is strongly correlated 
with the number of logged BTIDs (R=.78, p=.003), and that the dyadic self-report 
data has a similar correlation with the dyadic proximity data (R=.74, p<.0001).3 Addi-
tionally, a subset of subjects kept detailed activity diaries over several months. Com-
parisons revealed no systematic errors with respect to proximity and location, except 
for omissions due to the phone being turned off.  

                                                           
3 Interestingly, the surveys were not significantly correlated with the proximity logs of the 

incoming students.  This phenomena will be addressed in a later paper (Eagle, Lazer, and 
Pentland, 2005) discussing the fallibility of self-report data in particular situations. 



 
4    Community Structure: Complex Social Systems 

In the previous section we showed that Bluetooth-enabled mobile phones may be 
used to discover a great deal about the user’s patterns of activity.  In this section we 
will extend this base of user modeling to explore modeling complex social systems.   

By continually logging and time-stamping information about a user's activity, loca-
tion, and proximity to other users, the large-scale dynamics of collective human be-
havior can be analyzed. If deployed within a group of people working closely to-
gether, correlations between the phone log and proximity log could also be used to 
provide insight behind the factors driving mobile phone use.  Furthermore, a dataset 
providing the proximity patterns and relationships within large groups of people has 
implications within the computational epidemiology communities, and may help build 
more accurate models of airborne pathogen dissemination, as well as other more in-
nocuous contagions, such as the flow of information. 

 

 
Fig 9. Movement and communication visualization of subjects around cell towers. 

4.1 Human Landmarks 

As shown in Figure 4 and 11, there are people who users only see in a specific con-
text (in this instance, at work). If we know the user is at work, information about the 
time of day, and optionally the location within the building (using static Bluetooth 
devices) can be used to calculate the probability of that user seeing a specific individ-
ual, by the straightforward application of Bayes’ rule.  

In contrast to previous work that requires access to calendar applications for auto-
matic scheduling [16], we can generate inferences about whether a person will be 
seen within the hour, given the user's current context, with accuracies of up to 90% 
for 'low entropy' subjects. These predictions can inform the user of the most likely 
time and place to find specific colleagues or friends. We believe that the ability to 
reliably instigate casual meetings would be of significant value in the workplace. We 
must also remember, however, that the ability to predict people’s movements can be 
put to less savory uses. Careful consideration must be given to these possibilities 
before providing free access to such data. 



 
4.2 Relationship Inference 

In section 3 we discussed how information about location and proximity can be used 
to infer a user’s context. In much the same way, knowledge of the shared context of 
two users can provide insight into the nature of their association. For example, being 
near someone at 3pm by the coffee machines confers different meaning than being 
near them at 11pm at a local bar. However, even simply proximity patterns provide an 
indication of the structure of the underlying friendship network as shown in Figure 
10. The clique on the top left of each network are the Sloan business students while 
the Media Lab senior students are at the center of the clique on the bottom right. The 
first year Media Lab students can be found on the periphery of both graphs. 
 

 

        
 

Fig 10. Friendship (left) and daily proximity (right) networks share similar structure. 
Circles represent incoming Sloan business school students. Triangles, diamonds and 

squares represent senior students, incoming students, and faculty/staff/freshman at the 
Media Lab. 

 
We have trained a Gaussian mixture model [5] to detect patterns in proximity be-
tween users and correlate them with the type of relationship. The labels for this model 
came from a survey taken by all of the experimental subjects at the end of two months 
of data collection (some users came late to the study, but were included anyway).  
The survey asked who they spent time with, both in the workplace and out of the 
workplace, and who they would consider to be in their circle of friends. We compared 
these labels with estimated location (using cell tower distribution and static Bluetooth 
device distribution), proximity (measured from Bluetooth logs), and time of day.   

Workplace colleagues, outside friends, and people within a user’s circle of friends 
were identified with over 90% accuracy, calculated over the 2000 potential dyads.   
Initial examination of the errors indicates that the inclusion of communication logs 
combined with a more powerful modeling technique, such as Support Vector Ma-
chine, will have considerably greater accuracy. 

Some of the information that permits inference of friendship is illustrated in Figure 
11.  This figure shows that our sensing technique is picking up the common-sense 
phenomenon that office acquaintances are frequently seen in the workplace, but rarely 
outside the workplace.  Conversely, friends are often seen outside of the workplace, 
even if they are co-workers.  Determining membership in the 'circle of friends' re-
quires cross-referencing between friends: is this person a member of a cluster in the 
out-of-office proximity data?   

 
 



 

 
Fig 11. Plotted is proximity frequency data for a friend and a workplace acquaint-

ance of one subject. 
 
 

Friends Not Friends  
avg std avg std 

Total Proximity 
(minutes / day) 

72 150 9.5 36 

Saturday Night Proximity  
(minutes / week) 

7.3 18 .20 1.7 

Proximity with no Signal  
(minutes / day) 

12 20 2.9 20 

Total Number of Towers 
Together 

20 36 3.5 4.4 
 

Proximity at Home 
(minutes / day) 

3.7 8.4 .32 2.2 

Phone Calls / day 
 

.11 .27 .001 .017 

 
Table 1. Statistics correlated (.25<R<.8, p<.001) with friendship generated from 

sixty subjects (comprising 75 friendships) who work together at the Media Lab 
 

4.3 Proximity Networks of Work Groups 

By continuously logging the people proximate to an individual, we are able to quan-
tify a variety of properties about the individual's work group. Although most work in 
networks assumes a static topology, proximity network data is extremely dynamic and 
sparse. We are currently building generative models to attempt to paramerterize the 
underlying dynamics of these networks to gain insight into the functionality of the 
group itself. Additionally, we hope that quantifying these proximity networks and 
contrasting the dynamics of the different groups at the Media Lab, we will gain some 
insight into the underlying characteristics of the research groups. 
        



 

      

  
Fig 12. Proximity Networks for a team over one day 

 
 

Human Dynamics Group Responsive Environments GroupHuman Dynamics Group Responsive Environments Group

 
Fig 13. Frequency of Intra-Group Connections. The distribution for both groups 

has decay factor of approximately -1.5. 

4.4 Organizational Rhythms and Network Dynamics 

Organizations have been considered microcosms of society, each with their own cul-
tures and values [21]. Similar to society, organizational behavior often shows recur-
rent patterns despite being the sum of the idiosyncratic behavior of individuals [4]. 
We are beginning to explore the dynamics of behavior in organizations in response to 
both external (stock market performance, a Red Sox World Series victory) and inter-
nal (deadlines, reorganization) stimuli.  

During October, the seventy-five Media Lab subjects had been working towards 
the annual visit of the laboratory's sponsors. Preparation for the upcoming events 
typically consumes most people's free time and schedules shift dramatically to meet 
deadlines and project goals. It has been observed that a significant fraction of the 
community tends to spend much of the night in the lab finishing up last minute details 



 
just before the event. We are beginning to uncover and model how the aggregate 
work cycles expand in reaction to these types of global deadlines. Figure 14 is a time 
series of the maximum number of links in the Media Lab proximity network during 
every one hour window. It can be seen that the number of links in the Media Lab 
proximity network remained significantly greater than zero during the third week of 
October and  in early December, representing preparation for a large Media Lab 
sponsor event and MIT's finals week. A Fourier transform (Figure 14, bottom) of this 
times series uncovers two fundamental frequencies, the strongest being at 24 hours (1 
day), and the second being at 168 hours (7 days).  

 

 
Fig 14. The total number of edges each hour in the Media Lab proximity network 
from August 2004 to January 2005. Below is its corresponding Fourier transform 

confirming the two most fundamental frequencies of the dynamic network to be (not 
surprisingly) 1 day and 7 days. 

5    Conclusions 

It is inevitable that mobile devices of tomorrow will become both more powerful and 
more curious about their user and his or her context. We have distributed a fleet of 
one hundred curious mobile phones throughout a laboratory and a business school at 
MIT. The data these devices have returned to us is unprecedented in both magnitude 
and depth. The applications we have presented include ethnographic studies of de-
vices usage, relationship inference, individual behavior modeling and group behavior 
analysis. However, there is much more to be done, and it is our hope that this new 
type of data will inspire research in a variety of fields ranging from qualitative social 
science to theoretical artificial intelligence.  

24 hrs 

168 hrs  
(7 days) 
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