
CompSci 1 10.1

Today’s topics

Algorithms

Complexity

Upcoming

Security

Systems

Reading

Brookshear 5.6

Great Ideas Chapter 13

CompSci 1 10.3

New machines vs. new algorithms

New machine.

Costs $$$ or more.

Makes "everything" finish sooner.

Incremental quantitative improvements (Moore’s Law).

May not help much with some problems.

New algorithm.

Costs $ or less.

Dramatic qualitative improvements possible! (million times
faster)

May make the difference, allowing specific problem to be
solved.

May not help much with some problems.

Algorithmic Successes

N-body Simulation, Discrete Fourier transform, Quantum
mechanical simulations, Pixar movies…

CompSci 1 10.4

Linear Growth

Grade school addition

Work is proportional to number of digits N

Linear growth: kN for some constant k

How many reads? How many writes? How many operations?

02111

2486+

8724

1111

021

24+

87

11

N = 2 N = 4

CompSci 1 10.5

Quadratic Growth

Grade school multiplication

Work is proportional to square of number of digits N

Quadratic growth: kN2 for some constant k

How many reads? How many writes? How many operations?

2

2

9

5

3

2

6

4

1

67007

00086

00422

6558

02117

2486*

8724

3

3 021

651

672

24*

87

N = 2

N = 4

CompSci 1 10.6

Searching

Determine the location or existence of an element in a
collection of elements of the same type

Easier to search large collections when the elements are
already sorted

finding a phone number in the phone book

looking up a word in the dictionary

What if the elements are not sorted?

Sequential search

Worst case

Average case

CompSci 1 10.7

Searching sorted input

If the input is already sorted, we can search more efficiently
than linear time

Example: “Higher-Lower”

think of a number between 1 and 1000

have someone try to guess the number

if they are wrong, you tell them if the number is higher
than their guess or lower

Strategy?

How many guesses should we expect to make?

CompSci 1 10.8

Logarithms Revisited

Power to which any other number a must be raised to produce
n

a is called the base of the logarithm

Frequently used logarithms have special symbols

lg n = log2 n logarithm base 2

ln n = loge n natural logarithm (base e)

log n = log10 n common logarithm (base 10)

If we assume n is a power of 2, then the number of times we
can recursively divide n numbers in half is lg n

CompSci 1 10.9

Best Strategy

Always pick the number in the middle of the range

Why?

you eliminate half of the possibilities with each guess

We should expect to make at most

lg1000 10 guesses

Binary search

search n sorted inputs in logarithmic time

CompSci 1 10.10

Sequential vs. binary search

Average-case running time of sequential search is linear

Average-case running time of binary search is logarithmic

Number of comparisons:

65536

4096

256

16

2

n

32768

2048

128

8

1

sequential
search

4

12

16

8

1

binary
search

CompSci 1 10.11

Why does it matter?

CompSci 1 10.12

Sorting

Given n items, rearrange them so that they are in increasing
order

A key recurring problem

Many different methods, how do we choose?

Given a set of cards, describe how you would sort them:

Given a set of words, describe how you would sort them in
alphabetical order?

CompSci 1 10.13

Orders of Magnitude

CompSci 1 10.14

Comparisons in insertion sort

Worst case

element k requires (k-1) comparisons

total number of comparisons:

0+1+2+ … + (n-1) = (n)(n-1)

= (n2-n)

Best case

elements 2 through n each require one comparison

total number of comparisons:

1+1+1+ … + 1 = n-1

(n-1) times

CompSci 1 10.15

Running time of insertion sort

Best case running time is linear

Worst case running time is quadratic

Average case running time is also quadratic

on average element k requires (k-1)/2 comparisons

total number of comparisons:

 (0+1+2+ … + n-1) = (n)(n-1)

= (n2-n)

CompSci 1 10.16

Comparisons in merging

Merging two sorted lists of size m requires at least m and at
most 2m-1 comparisons

m comparisons if all elements in one list are smaller than
all elements in the second list

2m-1 comparisons if the smallest element alternates
between lists

CompSci 1 10.17

Comparisons at each merge

n-1

…

7

3

1

#comparisons per
merge

n-1

…

7n/8

3n/4

n/2

#comparisons
total

1n/22

………

n/84n/4

n/42n/2

n/21n

#merges#elements in
each list

#lists

CompSci 1 10.18

Comparisons in mergesort

Total number of comparisons is the sum of the number of
comparisons made at each merge

at most n comparisons at each merge

the number of times we can recursively divide n numbers
in half is lg n, so there are lg n merges

there are at most n lg n comparisons total

CompSci 1 10.19

Comparison of sorting algorithms

Best, worst and average-case running time of mergesort is (n
lg n)

Compare to average case behavior of insertion sort:

100000

10000

1000

100

10

n

2500000000

25000000

250000

2500

25

Insertion sort

664

132877

1660960

9965

33

Mergesort

CompSci 1 10.20

Quicksort

Most commonly used sorting algorithm

One of the fastest sorts in practice

Best and average-case running time is O(n lg n)

Worst-case running time is quadratic

Runs very fast on most computers when implemented
correctly

CompSci 1 10.21

Algorithmic successes

N-body Simulation

Discrete Fourier transform

Quantum mechanical simulations

Pixar movies…

