Today’s topics

Algorithms

Complexity

Upcoming
> Security
> Systems

Reading
> Brookshear 5.6
> Great Ideas Chapter 13

CompSci 1

10.1

New machines vs. new algorithms

® New machine.
> Costs $$$ or more.
> Makes "everything" finish sooner.
> Incremental quantitative improvements (Moore's Law).
> May not help much with some problems.
® New algorithm.
> Costs $or less.

> Dramatic qualitative improvements possible! (million times
faster)

> May make the difference, allowing specific problem to be
solved.

> May not help much with some problems.
® Algorithmic Successes

> N-body Simulation, Discrete Fourier transform, Quantum
mechanical simulations, Pixar movies...

CompSci 1 10.3

Linear Growth

® Grade school addition
> Work is proportional to number of digits N
> Linear growth: kN for some constant k

1 1 1 1 1 1
7 4 2 7
+ 4 + 6 8 4
2 1 1 2

N=4

N=2 . .
o How many reads? How many writes? How many operations?

CompSci 1

104

Quadratic Growth

® Grade school multiplication
> Work is proportional to square of number of digits N
> Quadratic growth: kN2 for some constant k

4278

7 8 * 6 8 4 2
= 4 2 8 55 6
1 5 6 171120
3 1 2 0 3422400
3 2 7 6 25668000
N=2 29270076

® How many reads? How many writes? How gpany operations?

CompSci 1 10.5

Searching

® Determine the location or existence of an element in a
collection of elements of the same type

® Easier to search large collections when the elements are
already sorted

> finding a phone number in the phone book
> looking up a word in the dictionary
® What if the elements are not sorted?

® Sequential search

> Worst case
> Average case

CompSci 1 10.6

Searching sorted input

o If the input is already sorted, we can search more efficiently
than linear time

o Example: “Higher-Lower”
> think of a number between 1 and 1000
> have someone try to guess the number

> if they are wrong, you tell them if the number is higher
than their guess or lower

® Strategy?
® How many guesses should we expect to make?

CompSci 1 10.7

Logarithms Revisited

® Power to which any other number a must be raised to produce
n

> a is called the base of the logarithm
® Frequently used logarithms have special symbols

> lgn =log,n logarithm base 2
> Inn =log,n natural logarithm (base e)
> logn =log;,n common logarithm (base 10)

® If we assume n is a power of 2, then the number of times we
can recursively divide n numbers in half is Ig n

CompSci 1 10.8

Best Strategy

® Always pick the number in the middle of the range
® Why?
> you eliminate half of the possibilities with each guess

® We should expect to make at most
1g1000 ~ 10 guesses

® Binary search
> search n sorted inputs in logarithmic time

CompSci 1 109

Sequential vs. binary search

® Average-case running time of sequential search is linear

Why does it matter?

Run time
(nanoseconds)

1.3 N8

47 N log,N

® Average-case running time of binary search is logarithmic 1000 | 1.3 seconds 10 msec 0.4 msec 0.048 msec
® Number of comparisons: LILICRCE 10,000 | 22 minutes 1 second 6 msec 0.48 msec
celie 100,000 15 days 1.7 minutes 78 msec 4.8 msec
problem
X . ik r-3 million 41 years 2.8 hours 0.94 seconds 48 msec
n sequentlal blnary 10 million| 41 millennia 1.7 weeks 11 seconds | 0.48 seconds
search search
. second 920 10,000 1 million 21 million
2 1 1 Max size
problem g 3,600 77,000 49 million 1.3 billion
16 8 solved [T 14,000 600,000 | 24trillion | 76 trillion
256 128 {1ONE " . 41,000 29 milion | 50trillion | 1,800 trillion
4096 2048 12 N multiplied by 10,
. o 1,000 100 10+ 10
65536 32768 16 time multiplied by
CompSci 1 10.10 CompSci 1 10.11
Sorting Orders of Magnitude
Seconds Equivalent Meters Per Imperial Example
® Given n items, rearrange them so that they are in increasing - P p— Second Units
order 10710 1.2 in/ decade Continental drift
10 10 seconds r : -
® A key recurring problem N - inutes 10 11t/ year Hair growing
. o -6 : .
® Many different methods, how do we choose? B 7 minutes 10 3.4 In/day Glacier
-4 " .
® Given a set of cards, describe how you would sort them: 4 10 1:2ft/hour | Gastro-intestinal tract
10 2.8 hours P .
s 10 2 ft / minute Ant
106 11 days 1 2.2 mi/ hour Human walk
107 1.6 weeks 102 220 mi/ hour Propeller airplane
108 3.8 months 104 370 mi / min Space shuttle
® Given a set of words, describe how you would sort them in 109 3.1 years 106 620 mi/sec | Earth in galactic orbit
. » L
alphabetical order? 10" | 3.1 decades 108 | 62,000 mi/sec | 1/3 speed of light
101 |3.1 centuries
forever 210 | thousand
102! age of P‘;"f"g's 220 | million
universe 2% | bpillion
CompSci 1 10.12 CompSci 1 10.13

Comparisons in insertion sort

® Worst case
> element k requires (k-1) comparisons
> total number of comparisons:
0+1+2+ ... +(n-1) =% (n)(n-1)
=% (n?-n)
® Best case
> elements 2 through n each require one comparison
> total number of comparisons:
1+1+1+ ... +1 =n-1

CompSci 1 10.14

Running time of insertion sort

® Best case running time is linear
® Worst case running time is quadratic
® Average case running time is also quadratic
> on average element k requires (k-1)/2 comparisons
> total number of comparisons:
¥ (0+1+2+ ... +n-1) =% (n)(n-1)
=Y (n?-n)

CompSci 1 10.15

Comparisons in merging

® Merging two sorted lists of size m requires at least m and at
most 2m-1 comparisons

> m comparisons if all elements in one list are smaller than
all elements in the second list

> 2m-1 comparisons if the smallest element alternates
between lists

CompSci 1 10.16

Comparisons at each merge

#lists #elementsin #merges #comparisons per #comparisons
each list merge total
n 1 n/2 1 n/2
n/2 2 n/4 3 3n/4
n/4 4 n/8 7 7n/8

CompSci 1 10.17

Comparisons in mergesort

® Total number of comparisons is the sum of the number of
comparisons made at each merge

> at most n comparisons at each merge

> the number of times we can recursively divide n numbers
in half is Ig n, so there are Ig n merges

> there are at most n Ig n comparisons total

CompSci 1 10.18

Comparison of sorting algorithms

® Best, worst and average-case running time of mergesort is ©(n
Ig n)

® Compare to average case behavior of insertion sort:

n Insertion sort Mergesort
10 25 33
100 2500 664
1000 250000 9965
10000 25000000 132877
100000 2500000000 1660960

CompSci 1 10.19

Quicksort

Most commonly used sorting algorithm

One of the fastest sorts in practice

Best and average-case running time is O(n lg n)
Worst-case running time is quadratic

Runs very fast on most computers when implemented
correctly

CompSci 1 10.20

Algorithmic successes

® N-body Simulation

Discrete Fourier transform

Quantum mechanical simulations

® Pixar movies...

CompSci 1 10.21

