
CompSci 100E 10.1

MVC: Model, View, Controller

ÿ A model is the state and brains of a system
þ In a game it's all the pieces and where they are
þ In a spreadsheet it's the data and the formulae

ÿ The view is how we look at the model
þ Spread sheet has graphs, charts, cells, text, …
þ Game has board, number of opponents, hit-points, …

ÿ When the model changes, the views reflect the changes
þ The model tells the views how/if it has changed
þ Model sends information to views OR
þ View asks model for information

CompSci 100E 10.2

MVC: interfaces and inheritance

ÿ A model might have multiple views
þ Tell all the views "I've changed"
þ Who manages the views? This requires state: store views
þ Why can't we keep this state in an interface?

ÿ See IModel and AbstractModel
þ One specifies behavior, the other provides default
þ Don’t rewrite code if we don't have to, maintaining views

will be the same for all models

ÿ See IView and SimpleView
þ No default/shared view state/behavior: text and GUI

CompSci 100E 10.3

Does SimpleViewer know Model?

ÿ What does the SimpleViewer know about its model?
þ If we look at code, is there any application-specific logic?
þ What if we wanted to play a game, start a new game?

ÿ Control in MVC with SimpleViewer and IModel
þ Loading a file calls initialize()

þ Entering text calls process()

þ Model calls view with messages, errors, and complete update

ÿ This isn't complete general, but it's pretty generic
þ For this input, here's the output

CompSci 100E 10.4

Pixmap Assignment

ÿ Traditional “Last” CompSci 6 Assignment
þ Lots has been done for you
þ Mainly an exercise in working with 2 D info

ÿ Not really MVC
þ Doesn’t hurt to keep that model in mind, though

ÿ Lots of GUI stuff
þ Graphical User Interface is not reall focus of this course
þ Just use what has been given
þ Become familiar with it by reading code, seeing results

ÿ Feel free to experiment

CompSci 100E 10.5

Java Exceptions

ÿ Many I/O operations can throw Exceptions
þ Code handles it for your
þ However, need to know what is going on
þ (Review pages in Chapter 2)

ÿ Catching Exceptions
þ Use try-catch block
try {

// statements that might generate exception

}

catch (Exception_type var) {

// code that deals with exception

}

ÿ Method can pass on responsibility for exception with throws
clause

CompSci 100E 10.6

Stack: What problems does it solve?

ÿ Stacks are used to avoid recursion, a stack can replace the
implicit/actual stack of functions called recursively

ÿ Stacks are used to evaluate arithmetic expressions, to
implement compilers, to implement interpreters
þ The Java Virtual Machine (JVM) is a stack-based machine
þ Postscript is a stack-based language
þ Stacks are used to evaluate arithmetic expressions in many

languages

ÿ Small set of operations: LIFO or last in is first out access
þ Operations: push, pop, top, create, clear, size
þ More in postscript, e.g., swap, dup, rotate, …

CompSci 100E 10.7

Simple stack example

ÿ Stack is part of java.util.Collections hierarchy
þ It's an OO abomination, extends Vector (like ArrayList)

o Should be implemented using Vector
o Doesn't model "is-a" inheritance

þ What does pop do? What does push do?

Stack s = new Stack();
s.push("panda");
s.push("grizzly");
s.push("brown");
System.out.println("size = " + s.size());
System.out.println(s.peek());
Objec

t o = s.pop();

System.out.println(s.peek());
System.out.println(s.pop());

CompSci 100E 10.8

Implementation is very simple

ÿ Extends Vector, so simply wraps Vector/ArrayList
methods in better names
þ push==add, pop==remove
þ Note: code below for ArrayList, Vector is actually used.

public Object push(Object o){
add(o);
return o;

}
public Object pop(Object o){

return remove(size()-1);
}

CompSci 100E 10.9

Uses rather than "is-a"

ÿ Suppose there's a private ArrayList, myStorage
þ Doesn't extend Vector, simply uses Vector/ArrayList
þ Disadvantages of this approach?

o Synchronization issues

public Object push(Object o){
myStorage.add(o);
return o;

}
public Object pop(Object o){

return myStorage.remove(size()-1);
}

CompSci 100E 10.10

Postfix, prefix, and infix notation

ÿ Postfix notation used in some HP calculators
þ No parentheses needed, precedence rules still respected
3 5 + 4 2 * 7 + 3 - 9 7 + *

þ Read expression
o For number/operand: push
o For operator: pop, pop, operate, push

ÿ See Postfix.java for example code, key ideas:
þ Use StringTokenizer , handy tool for parsing
þ Note: Exceptions thrown, what are these?

ÿ What about prefix and infix notations, advantages?

CompSci 100E 10.11

Exceptions

ÿ Exceptions are raised or thrown in exceptional cases
þ Bad indexes, null pointers, illegal arguments, …
þ File not found, URL malformed, …

ÿ Runtime exceptions aren't meant to be handled or caught
þ Bad index in array, don't try to handle this in code
þ Null pointer stops your program, don't code that way!

ÿ Other exceptions must be caught or rethrown
þ See FileNotFoundException and IOException in Scanner

class implementation

ÿ RuntimeException extends Exception, catch not required

CompSci 100E 10.12

Prefix notation in action

ÿ Scheme/LISP and other functional languages tend
to use a prefix notation

(define (square x) (* x x))

(define (expt b n)

(if (= n 0)

1

(* b (expt b (- n 1)))))

CompSci 100E 10.13

Postfix notation in action

ÿ Practical example of use of stack abstraction
ÿ Put operator after operands in expression

þ Use stack to evaluate
o operand: push onto stack
o operator: pop operands push result

ÿ PostScript is a stack language mostly used for printing
þ drawing an “X” with two equivalent sets of code

%!

200 200 moveto

100 100 rlineto

200 300 moveto

100 –100 rlineto

stroke showpage

%!

100 –100 200 300 100 100 200 200

moveto rlineto moveto rlineto

stroke showpage

