Introduction

CPS 116

Introduction to Database Systems

Random things to do after this course

Course roadmap

< Relational databases
= Relational algebra, database design, SQL, app programming
< XML
® Data model and query languages, app programming, interplay
between XML and relational databases
% Database internals
= Storage, indexing, query processing and optimization, concurrency
control and recovery
« Topics beyond traditional databases
= Web searches
® Data warchousing and data mining

= Continuous queries: data streams, publish/subscribe, sensor data

Misc. course information

< Book
® Database Systems: The Complete Book, by H. Garcia-Molina, J. D.
Ullman, and J. Widom

< Web site
= http://www.cs.duke.edu/courses/fal106/cps116/

= Course information; tentative syllabus and reference sections in
GMUW, lecture slides, assignments, programming notes

< Blackboard: for grades only
< Mailing list: cps116@cs.duke.edu
= Messages of general interest only

< No “official” recitation sessions; help sessions for
assignments, project, and exams to be scheduled

Grading

[90%, 100%1 A-/A/A+
[80%, 90%) B-/B/B+
[70%, 80%) C-/C/C+
[60%, 70%) D
[0%, 60%) F

< No curves

% Scale may be adjusted downwards (i.e., grades
upwards), if (for example) an exam is too difficult

+ Scale will never go upwards—mistake would be
mine alone if I made an exam too easy

Course load

< Four homework assignments (35%)

® Include written and programming problems
< Course project (25%)

= Details to be given in the third week of class
% Midterm and final (20% each)

= Open book, open notes

®= Final is comprehensive, but emphasizes the second half of
the course

Example projects

+ Facebook ™
® Tyler Brock and Beth Trushkowsky

< Web-based K-ville tenting management
= Zach Marshall

< Working with Duke immunologists on a system for
capturing and managing computational biology
workflows

< Working with Duke & Princeton biologists on a
Baboon (real, not acronym) database

So, what is a database system?

From Oxford Dictionary:

% Database: an organized body of related information

< Database system, DataBase Management System
(DBMS): a software system that facilitates the

creation and maintenance and use of an electronic
database

What do you want from a DBMS?

< Keep data around (persistent)
< Answer queries (questions) about data
< Update data

< Example: a traditional banking application
= Data: Each account belongs to a branch, has a number, an owner,
a balance, ...; each branch has a location, a manager, ...
= Persistency: Balance can’t disappear after a power outage
® Query: What’s the balance in Homer Simpson’s account? What's

the difference in average balance between Springfield and Capitol
City accounts?

= Modification: Homer withdraws $100; charge account with lower
than $500 balance with a $5 fee

10

Sounds simple!

l 1001#Springfield#Mr. Morgan

00987-00654#Ned Flanders#2500.00
00123-00456#Homer Simpson#400.00
00142-00857#Montgomery Burns#1000000000.00

% ASCII file
< Accounts/branches separated by newlines

+ Fields separated by #’s

Query

l 1001#Springfield#Mr. Morgan

00987-00654#Ned Flanders#2500.00
00123-00456#Homer Simpson#400.00
00142-00857#Montgomery Burns#1000000000.00

< What’s the balance in Homer Simpson’s account?
< A simple script

® Scan through the accounts file

= Look for the line containing “Homer Simpson”

= Print out the balance

Query processing tricks

< Tens of thousands of accounts are not Homer’s

%" And the list goes on...

< What happens when the query changes to: What's the
balance in accounts 00142-00857?

Observations

< Tons of tricks (not only in storage and query
processing, but also in concurrency control,
recovery, etc.)

+ Different tricks may work better in different usage
scenarios (example?)

+ Same tricks get used over and over again in different
applications

The birth of DBMS — 1

Checking Saving Installment loan Mortgage loan
¥ rI ¥ rI rrI Fr I
+ + + +
Data file Data file Data file Data file
processing and processing and processing and processing and
access routines | | access routines access routines access routines

Checking Saving Installment Mortgage
account account loan data loan data
data file data file file file

(Pretty drawing stolen from Hans-J. Schek’s VLDB 2000 slides)

The birth of DBMS — 2

‘ Checking H Saving ‘ Installment loan

‘ Mortgage loan

Generalized Access

Methods
Checking Saving Installment Mortgage
account account loan data loan data
data file data file file file

(Pretty drawing stolen from Hans-J. Schek’s VLDB 2000 slides)

The birth of DBMS — 3

Installment loan

‘ Checking H Saving ‘

‘ Mortgage loan

Data base
management system

Shared

data base

(Pretty drawing stolen from Hans-]J. Schek’s VLDB 2000 slides)

Early efforts

% “Factoring out” data management functionalities
from applications and standardizing these
functionalities is an important first step

= CODASYL standard (circa 1960’s)

% Bachman got a Turing award for this in 1973

< But getting the abstraction right (the API between
applications and the DBMS) is still tricky

CODASYL

% Query: Who have accounts with 0 balance managed by a
branch in Springfield?

% Pseudo-code of a CODASYL application:

Use index on account(balance) to get accounts with 0 balance;
For each account record:
Get the branch id of this account;
Use index on branch(id) to get the branch record;
If the branch record's location field reads "Springfield":
Output the owner field of the account record.

< Programmer controls “navigation”: accounts — branches

= How about branches — accounts?

What's wrong?

< The best navigation strategy & the best way of
organizing the data depend on data/workload
characteristics

< With the CODASYL approach

= To write correct code, application programmers need to
know how data is organized physically (e.g., which
indexes exist)

= To write efficient code, application programmers also
need to worry about data/workload characteristics

@ Can’t cope with changes in data/workload characteristics

20

The relational revolution (1970’s)

< A simple data model: data is stored in relations (tables)
% A declarative query language: SQL

SELECT Account.owner

FROM Account, Branch

WHERE Account.balance = 0

AND Branch.location = 'Springfield'
AND Account.branch_id = Branch.branch_id;

< Programmer specifies what answers a query should return,
but not how the query is executed

< DBMS picks the best execution strategy based on
availability of indexes, data/workload characteristics, etc.

@ Provides physical data independence

Physical data independence

< Applications should not need to worry about how
data is physically structured and stored

% Applications should work with a logical data model
and declarative query language

+ Leave the implementation details and optimization
to DBMS

< The single most important reason behind the success
of DBMS today

® And a Turing Award for E. F. Codd in 1981

Modern DBMS features)

+ Persistent storage of data

% Logical data model; declarative queries and updates
— physical data independence

= Relational model is the dominating technology today
= XML is a hot wanna-be

@« What else?

DBMS is multi-user

< Example
get account balance from database;
if balance > amount of withdrawal then

balance = balance - amount of withdrawal;
dispense cash;

store new balance into database;
< Homer at ATM1 withdraws $100
% Marge at ATM2 withdraws $50

% Initial balance = $400, final balance = ?

= Should be $250 no matter who goes first

Final balance = $300 .

Homer withdraws $100: Marge withdraws $50:

read balance; $400

read balance; $400
if balance > amount then
balance = balance - amount; $350
write balance; $350
if balance > amount then
balance = balance - amount; $300
write balance; $300

Final balance = §

Homer withdraws $100: Marge withdraws $50:

read balance;
read balance;
if balance > amount then
balance = balance - amount;
write balance;
if balance > amount then
balance = balance - amount;
write balance;

26

Concurrency control in DBMS

% Appears similar to concurrent programming
problems?

® But data not main-memory variables
< Appears similar to file system concurrent access?

= Approach taken by MySQL in the old days
(fun reading: http://openacs.org/philosophy/why-not-mysql.html)

" But

N
§

Recovery in DBMS

< Example: balance transfer
decrement the balance of account X by $100;
increment the balance of account Y by $100;

< Scenario 1: Power goes out after the first instruction

% Scenario 2: DBMS buffers and updates data in
memory (for efficiency); before they are written back
to disk, power goes out

< How can DBMS deal with these failures?

28

Summary of modern DBMS features

% Persistent storage of data

% Logical data model; declarative queries and updates
— physical data independence

< Multi-user concurrent access

+ Safety from system failures

+ Performance, performance, performance
= Massive amounts of data (terabytes ~ petabytes)

= High throughput (thousands ~ millions transactions per
minute)

* High availability (> 99.999% uptime)

29

Major DBMS today

< Oracle

< IBM DB2 (from System R, System R*, Starburst)
< Microsoft SQL Server

< NCR Teradata

% Sybase

% Informix (acquired by IBM)

< PostgreSQL (from UC Berkeley's Ingres, Postgres)
% Tandem NonStop (acquired by Compagq, now HP)
<+ MySQL

? Microsoft Access

Modern DBMS architecture

Applications

Queries/modifications| | Answers/responses

DBMS

d File system interface

orage system interface

< OS layer is bypassed for performance and safety
< Many details will be filled in the DBMS box

People working with databases

< End users: query/update databases through application user
interfaces (e.g., Amazon.com, 1-800-DISCOVER, etc.)

< Database designers: design database “schema” to model
aspects of the real world

< Database application developers: build applications that
interface with databases

< Database administrators (a.k.a. DBA’s): load, back up, and
restore data, fine-tune databases for performance

< DBMS implementors: develop the DBMS or specialized
data management software, implement new techniques for
query processing and optimization

