Relational Model & Algebra

CPS 116

Introduction to Database Systems

Announcements (Thurs. Aug. 31)

< Homework #1 will be assigned next Tuesday
< Office hours: see course Web page

® Jun: TTH before class

® Pradeep: MW afternoons
< Book

= Read the email for details

= Demo of Gradiance at the end of this lecture

Relational data model

% A database is a collection of relations (or tables)
% Each relation has a list of attributes (or columns)
< Each attribute has a domain (or type)
= Set-valued attributes not allowed
< Each relation contains a set of tuples (or rows)
® Each tuple has a value for each attribute of the relation

= Duplicate tuples are not allowed

* Two tuples are identical if they agree on all attributes

= Simplicity is a virtue!

Example

Student Course

SID |name age |GPA CID title

G
142 |Bart 10 |2.3 CPS116 |Intro. to Database Systems
123 |Milhouse |10 |3.1 CPS130 |Analysis of Algorithms
857 |Lisa 8 4.3 CPS114 |Computer Networks
456 |Ralph 8 Bo8)
Envoll
Ordering of rows doesn’t matter ﬁg g;gus
(even though the output is 142 [cPsi1a
always in some order) 123 [CPS116
857 |CPS116
857 |CPS130
456 |CPS114

Schema versus instance

% Schema (metadata)
= Specification of how data is to be structured logically
® Defined at set-up
= Rarely changes
< Instance
= Content
® Changes rapidly, but always conforms to the schema
= Compare to type and objects of type in a
programming language

Example

< Schema
= Studenr (SID integer, name string, age integer, GPA float)
= Course (CID string, title string)
= Enroll (SID integer, CID integer)
% Instance
= { (142, Bart, 10, 2.3), (123, Milhouse, 10, 3.1), ...}
= { <CPSl 16, Intro. to Database Systems}, coal?
= { (142, CPS116), (142, CPS114), ...}

Relational algebra

A language for querying relational databases based on
operators:

< Core set of operators:

= Selection, projection, cross product, union, difference, and
renaming

% Additional, derived operators:
= Join, natural join, intersection, etc.

< Compose operators to make complex queries

Selection

< Input: a table R
% Notation: 0, R
= is called a selection condition/predicate
% Purpose: filter rows according to some criteria

% Output: same columns as R, but only rows of R that
satisfy p

Selection example

< Students with GPA higher than 3.0

Opy > 3.0 Student

SID |name age |GPA mm
142 [Bart 10 2.3
123 [Milhouse[10 3.1
857 |Lisa 8 4.3 [857 JLisa [8 [4.3]
456 [Ralph |8 [2.3

10

More on selection

+ Selection predicate in general can include any
column of R, constants, comparisons (=, <, etc.),
and Boolean connectives (A: and, V: or, and —: not)

= Example: straight A students under 18 or over 21
TGPA > 4.0 A (age < 18V age > 21y Stridlent

< But you must be able to evaluate the predicate over

a single row of the input table

® Example: student with the highest GPA
O P T ittt T Student

Projection

< Input: a table R
< Notation: 7, R
= L is a list of columns in R
% Purpose: select columns to output

< Output: same rows, but only the columns in L

Projection example

% ID’s and names of all students

TSID, name Student

SID |[name age |GPA SID |name

142 |Bart 10 (2.3 142 |Bart
123 [Milhouse[10 |3.1 123 [Milhouse
857 |Lisa 8 4.3 857 |Lisa

208

456 [Ralph |8 456 [Ralph

More on projection

< Duplicate output rows are removed (by definition)

= Example: student ages

T e Strdent

SID |name age [GPA
142 |Bart 10
123 |Milhouse |10
857 |Lisa 8
456 |Ralph 8

=
=)

NEERN
wlw | |w

Cross product

< Input: two tables R and §
< Notation: R X §
< Purpose: pairs rows from two tables

< Output: for each row 7 in R and each row s in §,
output a row 7s (concatenation of » and)

Cross product example

% Student X Enroll

SID |name age |GPA SID |CID

142 |Bart 10 [2.3 142 |CPS116

123 |Milhouse |10 |3.1 142 |CPS114
X 123 |CPS116

SID |name age |GPA |SID |CID

142 |Bart 10 |2.3 |142 |CPS116
142 |Bart 10 |2.3 [142 |CPS114
142 |Bart 10 |2.3 |123 |CPS116
123 |Milhouse [10 [3.1 |142 |CPS116
123 |Milhouse [10 (3.1 |142 |CPS114
123 |Milhouse [10 [3.1 |123 |CPS116

A note on column ordering

+ The ordering of columns in a table is considered
unimportant (as is the ordering of rows)

SID |name age |GPA [SID |CID SID |CID SID |name age |GPA
142 |[Bart 10 [2.3 [142 [CPS116 142 |CPS116 142 [Bart 10 2.3
142 |Bart 10 [2.3 [142 [CPS114 142 |CPS114 142 [Bart 10 2.3
142 |[Bart 10 |2.3 [123 [CPS116| __ |[123 |CPS116(142 |Bart 10 [2.3
123 |Milhouse |10 [3.1 142 [CPS116| ~ [142 [CPS116[123 [Milhouse[10 |[3.1
123 [Milhouse |10 |3.1 (142 |[CPS114 142 |CPS114 (123 [Milhouse |10 (3.1
123 [Milhouse |10 |3.1 (123 |CPS116 123 [CPS116]123 |Milhouse |10 |3.1

< That means cross product is commutative, i.e.,
R x§ =S8 XRforany R and §

Derived operator: join

< Input: two tables R and §
% Notation: R >, §
= is called a join condition/predicate

< Purpose: relate rows from two tables according to
some criteria

< Output: for each row 7 in R and each row s in §,
output a row s if 7 and s satisfy p

% Shorthand for g, (RXS)

Join example

< Info about students, plus CID’s of their courses

Student NSmdenl.S]D = Enroll.SID Enroll

SID [name age |GPA SID |CID
142 [Bart 10 [2.3 142 _[cPs116
123 [Milhouse[10 [3.1 > 142 [cps114
Student SID = 123 [cPS116
Enroll SID
Use table_name. column_name syntax
to disambiguate SID [name age [GPA [SID [cID
identically named [142 [Bart 10 [2.3 [142 [cPS1l6
142 [Bart 10 [2.3 [142 [cps114
columns from

different input
tables

Derived operator: natural join

< Input: two tables R and §

< Notation: R ><1 §

< Purpose: relate rows from two tables, and
= Enforce equality on all common attributes
= Eliminate one copy of common attributes

« Shorthand for 7, (R >, S), where
= p equates all attributes common to R and §

= L is the union of all attributes from R and S, with
duplicate attributes removed

20

Natural join example

& Student < Enroll = T, (Student ><, Enroll)

= 7TSID, name, age, GPA, CID (Stuudent ><]Stnzlml.SID = Enroll SID Enroll)

SID |name age |GPA SID |CID

142 |Bart 10 [2.3 142 |CPS116

123 |Milhouse |10 |3.1 142 |CPS114
> 123 [cPsiie

Union

< Input: two tables R and §
% Notation: R U §

® R and § must have identical schema
< Output:

= Has the same schema as R and §

= Contains all rows in R and all rows in §, with duplicate

rows eliminated

22

Difference

< Input: two tables R and §
< Notation: R — §

® R and § must have identical schema
< Output:

® Has the same schema as R and §

= Contains all rows in R that are not found in §

Derived operator: intersection

< Input: two tables R and §
% Notation: RN §

= R and § must have identical schema
< Output:

® Has the same schema as R and §

= Contains all rows that are in both R and §

Renaming

< Input: a table R

% Notation: pg R, Py, 4, ..y ROt Psa 4,)R

< Purpose: rename a table and/or its columns

% Output: a renamed table with the same rows as R
< Used to

® Avoid confusion caused by identical column names

= Create identical columns names for natural joins

Renaming example

% SID’s of students who take at least two courses

Summary of core operators ’
“ Selection: 0, R

% Projection: m; R

% Cross product: R X §

% Union: RU S

< Difference: R — §

< Renaming: p Sy, Ay o R

® Does not really add “processing” power

N
§

Summary of derived operators

% Join: R4, §
% Natural join: R ><1 §

< Intersection: RN §

% Many more

® Semijoin, anti-semijoin, quotient, ...

28

An exercise

% Names of students in Lisa’s classes

Their names

Students in
Lisa’s classes

Lisa’s classes

Who's Lisa?

Another exercise

% CID’s of the courses that Lisa is NOT taking

A trickier exercise

< Who has the highest GPA?

Monotone operators

What happens
RelOp 5
to the output?
Add more rows

to the input...

% If some old output rows may need to be removed
® Then the operator is non-monotone
< Otherwise the operator is monotone

= That is, old output rows always remain “correct” when
more rows are added to the input

+ Formally, for a monotone operator op:
R C R’ implies gp(R) Cop(R’)

Classification of relational operators

+ Selection: 0, R

< Projection: 7, R

< Cross product: R X §
% Join: R <, S

< Natural join: R > §
< Union: RU S

< Difference: R — §

< Intersection: RN §

Why is “—” needed for highest GPA?

< Composition of monotone operators produces a
monotone query

® Old output rows remain “correct” when more rows are
added to the input

34

Why do we need core operator X?

< Difference
% Cross product

< Union

% Selection? Projection?

35

Why is r.a. a good query language?

Relational calculus

% {s.85ID | 5 € Student N
—(35’ € Student: s.GPA < s.GPA) }, or
{s.8ID | 5 € Student N
(Vs € Student: s. GPA > 5.GPA) }
% Relational algebra = “safe” relational calculus

= Every query expressible as a safe relational calculus query is also
expressible as a relational algebra query

= And vice versa
< Example of an unsafe relational calculus query
= { s.name | —(s € Student) }

= Cannot evaluate this query just by looking at the database

Turing machine?

+ Relational algebra has no recursion

= Example of something not expressible in relational
algebra: Given relation Parent(parent, child), who are
Bart’s ancestors?

< Why not Turing machine?
= Optimization becomes undecidable
® You can always implement it at the application level

< Recursion is added to SQL nevertheless!

