Relational Model \& Algebra

CPS 116
Introduction to Database Systems

Announcements (Thurs. Aug. 31)

* Homework \# 1 will be assigned next Tuesday
* Office hours: see course Web page
- Jun: TTH afternoon before class
- Pradeep: MW afternoon

Book

- Read the email for details
- Demo of Gradiance at the end of this lecture

Relational data model

* A database is a collection of relations (or tables)
\star Each relation has a list of attributes (or columns)
* Each attribute has a domain (or type)
- Set-valued attributes not allowed
* Each relation contains a set of tuples (or rows)
- Each tuple has a value for each attribute of the relation
- Duplicate tuples are not allowed
- Two tuples are identical if they agree on all attributes
σ Simplicity is a virtue!

Example

* Schema
- Student (SID integer, name string, age integer, GPA float)
- Course (CID string, title string)
- Enroll (SID integer, CID integer)
* Instance
- $\{\langle 142$, Bart, $10,2.3\rangle,\langle 123$, Milhouse, $10,3.1\rangle, \ldots\}$
- $\{\langle$ CPS116, Intro. to Database Systems $\rangle, \ldots\}$
- $\{\langle 142, \operatorname{CPS} 116\rangle,\langle 142, \operatorname{CPS} 114\rangle, \ldots\}$
- Compare to type and objects of type in a programming language

Relational algebra

A language for querying relational databases based on operators:

Selection

* Input: a table R
$*$ Notation: $\sigma_{p} R$
- p is called a selection condition/predicate
* Purpose: filter rows according to some criteria
* Output: same columns as R, but only rows of R that satisfy p
- Selection, projection, cross product, union, difference, and renaming
* Additional, derived operators:
- Join, natural join, intersection, etc.
* Compose operators to make complex queries

Selection example

* Students with GPA higher than 3.0

$$
\sigma_{G P A}>3.0 \text { Student }
$$

More on selection

* Selection predicate in general can include any column of R, constants, comparisons ($=, \leq$, etc.), and Boolean connectives (\wedge : and, \vee : or, and \neg : not)
- Example: straight A students under 18 or over 21 $\sigma_{G P A} \geq 4.0 \wedge$ (age $<18 \vee$ age $\left.>21\right)$ Student
But you must be able to evaluate the predicate over a single row of the input table
- Example: student with the highest GPA
$\sigma_{\text {GPA }}$ Student

Projection

※ Input: a table R

* Notation: $\pi_{L} R$
- L is a list of columns in R
* Purpose: select columns to output
* Output: same rows, but only the columns in L

Projection example

\star ID's and names of all students

$$
\pi_{S I D, \text { name }} \text { Student }
$$

More on projection

\star Duplicate output rows are removed (by definition)

- Example: student ages

$$
\pi_{\text {age }} \text { Student }
$$

Cross product

* Input: two tables R and S
* Notation: $R \times S$
\star Purpose: pairs rows from two tables
* Output: for each row r in R and each row s in S, output a row $r s$ (concatenation of r and s)

Cross product example

* Student \times Enroll

Derived operator: join

* Input: two tables R and S
$*$ Notation: $R \bowtie_{p} S$
- p is called a join condition/predicate
* Purpose: relate rows from two tables according to some criteria
* Output: for each row r in R and each row s in S, output a row $r s$ if r and s satisfy p
$*$ Shorthand for $\sigma_{p}(R \times S)$

A note on column ordering

* The ordering of columns in a table is considered unimportant (as is the ordering of rows)

SID	name	age	GPA	SID	CID							
142	Bart	10	2.3	142	CPS116							
142	Bart	10	2.3	142	CPS114							
142	Bart	10	2.3	123	CPS116							
123	Milhouse	10	3.1	142	CPS116							
123	Milhouse	10	3.1	142	CPS114							
123	Milhouse	10	3.1	123	CPS116							
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\quad	SID	CID	SID	name	age	GPA
:---	:---	:---	:---	:---	:---							
142	CPS116	142	Bart	10	2.3							
142	CPS114	142	Bart	10	2.3							
123	CPS116	142	Bart	10	2.3							
142	CPS116	123	Milhouse	10	3.1							
142	CPS114	123	Milhouse	10	3.1							
123	CPS116	123	Milhouse	10	3.1							
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots							

\star That means cross product is commutative, i.e., $R \times S=S \times R$ for any R and S

Join example

* Info about students, plus CID's of their courses

Student $\bowtie_{\text {Student.SID }}=$ Enroll.SID Enroll

Derived operator: natural join

* Input: two tables R and S
* Notation: $R \bowtie S$
\star Purpose: relate rows from two tables, and
- Enforce equality on all common attributes
- Eliminate one copy of common attributes
$*$ Shorthand for $\pi_{L}\left(R \bowtie_{p} S\right)$, where
- p equates all attributes common to R and S
- L is the union of all attributes from R and S, with duplicate attributes removed

Natural join example

* Student \bowtie Enroll $=\pi_{\text {? }}($ Student \bowtie ? Enroll $)$
$=\pi_{\text {SID, name, age, GPA, CID }}\left(\right.$ Student $\bowtie_{\text {Student.SID }}=$ Enroll.SID Enroll $)$

Difference

$\%$ Input: two tables R and S

* Notation: $R-S$
- R and S must have identical schema
* Output:
- Has the same schema as R and S
- Contains all rows in R that are not found in S

Derived operator: intersection

* Input: two tables R and S
* Notation: $R \cap S$
- R and S must have identical schema
* Output:
- Has the same schema as R and S
- Contains all rows that are in both R and S
* Shorthand for $R-(R-S)$
* Also equivalent to $S-(S-R)$
* And to $R \bowtie S$

And to R®S

Renaming

* Input: a table R
\star Notation: $\rho_{S} R, \rho_{\left(A_{1}, A_{2}, \ldots\right)} R$ or $\rho_{S\left(A_{1}, A_{2}, \ldots\right)} R$
* Purpose: rename a table and/or its columns
* Output: a renamed table with the same rows as R
* Used to
- Avoid confusion caused by identical column names
- Create identical columns names for natural joins

Renaming example

* SID's of students who take at least two courses
Enroll $\bowtie_{\text {? }}$ Enroll
$\pi_{\text {SID }}\left(\right.$ Enroll $\bowtie_{\text {EnrollSID } \equiv \text { Enroll.CID }}$ Enroll)
Expression tree syntax: $\pi_{S I D 1}$

Summary of derived operators

$*$ Join: $R \bowtie_{p} S$

* Natural join: $R \bowtie S$
$\%$ Intersection: $R \cap S$
* Many more
- Semijoin, anti-semijoin, quotient, ...

Another exercise

* CID's of the courses that Lisa is NOT taking

Summary of core operators

Selection: $\sigma_{p} R$

* Projection: $\pi_{L} R$
* Cross product: $R \times S$
* Union: $R \cup S$
* Difference: $R-S$
* Renaming: $\rho_{S\left(A_{1}, A_{2}, \ldots\right)} R$
- Does not really add "processing" power

Monotone operators

\nLeftarrow If some old output rows may need to be removed

- Then the operator is non-monotone
* Otherwise the operator is monotone
- That is, old output rows always remain "correct" when more rows are added to the input
* Formally, for a monotone operator $o p$:
$R \subseteq R^{\prime}$ implies $o p(R) \subseteq o p\left(R^{\prime}\right)$

Classification of relational operators

```
* Selection: }\mp@subsup{\sigma}{p}{}R\quad\mathrm{ Monotone
* Projection: }\mp@subsup{\pi}{L}{}R\quad\mathrm{ Monotone
* Cross product: R }\timesS\mathrm{ Monotone
* Join: R\bowtie}\mp@subsup{\bowtie}{p}{}S\quad\mathrm{ Monotone
* Natural join: R\bowtieS Monotone
* Union: R\cupS Monotone
* Difference: R - S Monotone w.r.t. R; non-monotone w.r.t S
* Intersection: R\capS Monotone
```


Why is "-" needed for highest GPA?

* Composition of monotone operators produces a monotone query
- Old output rows remain "correct" when more rows are added to the input
* Highest-GPA query is non-monotone
- Current highest GPA is 4.1
- Add another GPA 4.2
- Old answer is invalidated
${ }^{\circ}$ So it must use difference!

Why do we need core operator X ?

* Difference
- The only non-monotone operator
* Cross product
- The only operator that adds columns

* Union

- The only operator that allows you to add rows?
- A more rigorous argument?
* Selection? Projection?
- Homework problem ©

Why is r.a. a good query language?

* Simple
- A small set of core operators who semantics are easy to grasp
* Declarative?
- Yes, compared with older languages like CODASYL
- Though operators do look somewhat "procedural"
* Complete?
- With respect to what?

* Relational algebra $=$ "safe" relational calculus
- Every query expressible as a safe relational calculus query is also expressible as a relational algebra query
- And vice versa
* Example of an unsafe relational calculus query
- $\{$ s.name $\mid \neg(s \in$ Student $)\}$
- Cannot evaluate this query just by looking at the database

Relational calculus

```
\(*\{\) s.SID \(\mid s \in\) Student \(\wedge\) \(\neg\left(\exists s^{\prime} \in\right.\) Student: \(\left.\left.s . G P A<s^{\prime} . G P A\right)\right\}\), or
\(\{\) s.SID \(\mid s \in\) Student \(\wedge\)
\[
\left.\left(\forall s^{\prime} \in \text { Student }: s . G P A \geq s^{\prime} . G P A\right)\right\}
\]
\(\{\) s.SID \(\mid s \in\) Student \(\wedge\)
    \(\left(\forall s^{\prime} \in\right.\) Student: s.GPA \(\left.\left.\geq s^{\prime} . G P A\right)\right\}\)
```


Turing machine?

* Relational algebra has no recursion
- Example of something not expressible in relational algebra: Given relation Parent(parent, child), who are Bart's ancestors?
* Why not Turing machine?
- Optimization becomes undecidable
- You can always implement it at the application level * Recursion is added to SQL nevertheless!

