
1

Relational Model & Algebra

CPS 116

Introduction to Database Systems

2

Announcements (Thurs. Aug. 31)

Homework #1 will be assigned next Tuesday

Office hours: see course Web page
Jun: TTH afternoon before class

Pradeep: MW afternoon

Book
Read the email for details

Demo of Gradiance at the end of this lecture

3

Relational data model

A database is a collection of relations (or tables)
Each relation has a list of attributes (or columns)
Each attribute has a domain (or type)

Set-valued attributes not allowed

Each relation contains a set of tuples (or rows)
Each tuple has a value for each attribute of the relation
Duplicate tuples are not allowed

• Two tuples are identical if they agree on all attributes

Simplicity is a virtue!

4

Example
Student Course

Enroll

Ordering of rows doesn’t matter
(even though the output is

always in some order)

SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
857 Lisa 8 4.3
456 Ralph 8 2.3
...

CID title
CPS116 Intro. to Database Systems
CPS130 Analysis of Algorithms
CPS114 Computer Networks
... ...

SID CID
142 CPS116
142 CPS114
123 CPS116
857 CPS116
857 CPS130
456 CPS114
... ...

5

Schema versus instance

Schema (metadata)
Specification of how data is to be structured logically

Defined at set-up

Rarely changes

Instance
Content

Changes rapidly, but always conforms to the schema

Compare to type and objects of type in a
programming language

6

Example

Schema
Student (SID integer, name string, age integer, GPA float)

Course (CID string, title string)

Enroll (SID integer, CID integer)

Instance
{ h142, Bart, 10, 2.3i, h123, Milhouse, 10, 3.1i, ...}

{ hCPS116, Intro. to Database Systemsi, ...}

{ h142, CPS116i, h142, CPS114i, ...}

2

7

Relational algebra

Core set of operators:
Selection, projection, cross product, union, difference, and
renaming

Additional, derived operators:
Join, natural join, intersection, etc.

Compose operators to make complex queries

RelOp

RelOp

A language for querying relational databases based on
operators:

8

Selection

Input: a table R

Notation: σp R
p is called a selection condition/predicate

Purpose: filter rows according to some criteria

Output: same columns as R, but only rows of R that
satisfy p

9

Selection example

Students with GPA higher than 3.0

σGPA > 3.0 Student

σGPA > 3.0

SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
857 Lisa 8 4.3
456 Ralph 8 2.3

SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
857 Lisa 8 4.3
456 Ralph 8 2.3

10

More on selection

Selection predicate in general can include any
column of R, constants, comparisons (=, ·, etc.),
and Boolean connectives (∧: and, ∨: or, and ¬: not)

Example: straight A students under 18 or over 21

σGPA ≥ 4.0 ∧ (age < 18 ∨ age > 21) Student

But you must be able to evaluate the predicate over
a single row of the input table

Example: student with the highest GPA

σGPA ≥ all GPA in Student table Student

11

Projection

Input: a table R

Notation: πL R
L is a list of columns in R

Purpose: select columns to output

Output: same rows, but only the columns in L

12

Projection example

ID’s and names of all students

πSID, name Student

πSID, name

SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
857 Lisa 8 4.3
456 Ralph 8 2.3

SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
857 Lisa 8 4.3
456 Ralph 8 2.3

3

13

More on projection

Duplicate output rows are removed (by definition)
Example: student ages

πage Student

πage

SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
857 Lisa 8 4.3
456 Ralph 8 2.3

SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
857 Lisa 8 4.3
456 Ralph 8 2.3

14

Cross product

Input: two tables R and S
Notation: R × S

Purpose: pairs rows from two tables

Output: for each row r in R and each row s in S,
output a row rs (concatenation of r and s)

15

Cross product example

Student × Enroll
SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
...

SID CID
142 CPS116
142 CPS114
123 CPS116
... ...

×

SID name age GPA SID CID
142 Bart 10 2.3 142 CPS116
142 Bart 10 2.3 142 CPS114
142 Bart 10 2.3 123 CPS116
123 Milhouse 10 3.1 142 CPS116
123 Milhouse 10 3.1 142 CPS114
123 Milhouse 10 3.1 123 CPS116
...

16

A note on column ordering

The ordering of columns in a table is considered
unimportant (as is the ordering of rows)

SID name age GPA SID CID
142 Bart 10 2.3 142 CPS116
142 Bart 10 2.3 142 CPS114
142 Bart 10 2.3 123 CPS116
123 Milhouse 10 3.1 142 CPS116
123 Milhouse 10 3.1 142 CPS114
123 Milhouse 10 3.1 123 CPS116
...

SID CID SID name age GPA
142 CPS116 142 Bart 10 2.3
142 CPS114 142 Bart 10 2.3
123 CPS116 142 Bart 10 2.3
142 CPS116 123 Milhouse 10 3.1
142 CPS114 123 Milhouse 10 3.1
123 CPS116 123 Milhouse 10 3.1
...

That means cross product is commutative, i.e.,
R × S = S × R for any R and S

=

17

Derived operator: join

Input: two tables R and S

Notation: R p S
p is called a join condition/predicate

Purpose: relate rows from two tables according to
some criteria

Output: for each row r in R and each row s in S,
output a row rs if r and s satisfy p

Shorthand for σp (R × S)

18

Join example

Info about students, plus CID’s of their courses

Student Student.SID = Enroll.SID Enroll
SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
...

SID CID
142 CPS116
142 CPS114
123 CPS116
... ...

×

SID name age GPA SID CID
142 Bart 10 2.3 142 CPS116
142 Bart 10 2.3 142 CPS114
142 Bart 10 2.3 123 CPS116
123 Milhouse 10 3.1 142 CPS116
123 Milhouse 10 3.1 142 CPS114
123 Milhouse 10 3.1 123 CPS116
...

Student.SID =
Enroll.SID

Use table_name. column_name syntax
to disambiguate
identically named
columns from
different input
tables

4

19

Derived operator: natural join

Input: two tables R and S

Notation: R S

Purpose: relate rows from two tables, and
Enforce equality on all common attributes

Eliminate one copy of common attributes

Shorthand for πL (R p S), where
p equates all attributes common to R and S

L is the union of all attributes from R and S, with
duplicate attributes removed

20

SID name age GPA SID CID
142 Bart 10 2.3 142 CPS116
142 Bart 10 2.3 142 CPS114
142 Bart 10 2.3 123 CPS116
123 Milhouse 10 3.1 142 CPS116
123 Milhouse 10 3.1 142 CPS114
123 Milhouse 10 3.1 123 CPS116
...

Student.SID =
Enroll.SID

SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
...

SID CID
142 CPS116
142 CPS114
123 CPS116
... ...

Natural join example

Student Enroll = π? (Student ? Enroll)

= πSID, name, age, GPA, CID (Student Student.SID = Enroll.SID Enroll)

21

Union

Input: two tables R and S
Notation: R ∪ S

R and S must have identical schema

Output:
Has the same schema as R and S
Contains all rows in R and all rows in S, with duplicate
rows eliminated

22

Difference

Input: two tables R and S
Notation: R − S

R and S must have identical schema

Output:
Has the same schema as R and S
Contains all rows in R that are not found in S

23

Derived operator: intersection

Input: two tables R and S
Notation: R ∩ S

R and S must have identical schema

Output:
Has the same schema as R and S
Contains all rows that are in both R and S

Shorthand for R − (R − S)

Also equivalent to S − (S − R)

And to R S

24

Renaming

Input: a table R

Notation: ρS R, ρ(A1, A2, …) R or ρS(A1, A2, …) R

Purpose: rename a table and/or its columns

Output: a renamed table with the same rows as R

Used to
Avoid confusion caused by identical column names

Create identical columns names for natural joins

5

25

Renaming example

SID’s of students who take at least two courses

Enroll ? Enroll

πSID (Enroll Enroll.SID = Enroll.SID ∧ Enroll.CID ≠ Enroll.CID Enroll)

ρEnroll1(SID1, CID1) ρEnroll2(SID2, CID2)

Enroll Enroll

SID1 = SID2 ∧ CID1 ≠ CID2

πSID1Expression tree syntax:

26

Summary of core operators

Selection: σp R

Projection: πL R
Cross product: R × S

Union: R ∪ S

Difference: R − S

Renaming: ρ S(A1, A2, …) R
Does not really add “processing” power

27

Summary of derived operators

Join: R p S

Natural join: R S
Intersection: R ∩ S

Many more
Semijoin, anti-semijoin, quotient, …

28

An exercise

Names of students in Lisa’s classes

Students in
Lisa’s classes Student

πnameTheir names

Enroll

πSID

Enroll

πCIDLisa’s classes

Student

σname = “Lisa”

Who’s Lisa?

29

Another exercise

CID’s of the courses that Lisa is NOT taking

CID’s of the courses
that Lisa IS taking

All CID’s
−

πCID

Course

Enroll

Student

σname = “Lisa”

πCID

30

A trickier exercise

Who has the highest GPA?
Who does NOT have the highest GPA?

Whose GPA is lower than somebody else’s?

πSID

Student

−

StudentStudent

ρStudent1 ρStudent2

Student1.GPA < Student2.GPA

πStudent1.SID

A deeper question:
When (and why) is “−” needed?

6

31

Monotone operators

If some old output rows may need to be removed
Then the operator is non-monotone

Otherwise the operator is monotone
That is, old output rows always remain “correct” when
more rows are added to the input

Formally, for a monotone operator op:
R ⊆ R’ implies op(R) ⊆ op(R’)

RelOp
Add more rows
to the input...

What happens
to the output?

32

Classification of relational operators

Selection: σp R
Projection: πL R
Cross product: R × S

Join: R p S
Natural join: R S
Union: R ∪ S
Difference: R − S
Intersection: R ∩ S

Monotone

Monotone

Monotone

Monotone

Monotone

Monotone
Monotone w.r.t. R; non-monotone w.r.t S

Monotone

33

Why is “−” needed for highest GPA?

Composition of monotone operators produces a
monotone query

Old output rows remain “correct” when more rows are
added to the input

Highest-GPA query is non-monotone
Current highest GPA is 4.1

Add another GPA 4.2

Old answer is invalidated

So it must use difference!

34

Why do we need core operator X?

Difference
The only non-monotone operator

Cross product
The only operator that adds columns

Union
The only operator that allows you to add rows?

A more rigorous argument?

Selection? Projection?
Homework problem ☺

35

Why is r.a. a good query language?

Simple
A small set of core operators who semantics are easy to
grasp

Declarative?
Yes, compared with older languages like CODASYL

Though operators do look somewhat “procedural”

Complete?
With respect to what?

36

Relational calculus

{ s.SID | s ∈ Student ∧
¬(∃s’ ∈ Student: s.GPA < s’.GPA) }, or

{ s.SID | s ∈ Student ∧
(∀s’ ∈ Student: s.GPA ≥ s’.GPA) }

Relational algebra = “safe” relational calculus
Every query expressible as a safe relational calculus query is also
expressible as a relational algebra query

And vice versa

Example of an unsafe relational calculus query
{ s.name | ¬(s ∈ Student) }

Cannot evaluate this query just by looking at the database

7

37

Turing machine?

Relational algebra has no recursion
Example of something not expressible in relational
algebra: Given relation Parent(parent, child), who are
Bart’s ancestors?

Why not Turing machine?
Optimization becomes undecidable

You can always implement it at the application level

Recursion is added to SQL nevertheless!

