Relational Database Design
Part II

CPS 116

Introduction to Database Systems

Announcements (September 7)

<+ Homework #1 assigned today

® Due on September 19

= Start early!!!

= Help session next week (to be scheduled via email)
% “Notes” vs. “final” versions of lecture slides
< Handout box outside my office

+ Details of the course project and a list of suggested
ideas will be available next Tuesday

Database design steps: review

% Understand the real-world domain being modeled
% Specify it using a database design model (e.g., E/R)

+ Translate specification to the data model of DBMS
(e.g., relational)

% Create DBMS schema

@ Next: translating E/R design to relational schema

E/R model: review

< Entity sets
= Keys
= Weak entity sets
+ Relationship sets
= Attributes on relationships
= Multiplicity
= Roles

® Binary versus N-ary relationships

* Modeling N-ary relationships with weak entity sets and binary
relationships

= ISA relationships

Translating entity sets

< An entity set translates directly to a table
= Attributes — columns

= Key attributes — key columns

Student (SID, name) Course (CID, title)

Translating weak entity sets

< Remember the “borrowed” key attributes

% Watch out for attribute name conflicts

Building (building_name, year)
Rooms (building_name, room_number, capacity)
Seats (building_name, room_number, seat_number, left_or_right)

Translating relationship sets

< A relationship set translates to a table
= Keys of connected entity sets — columns

= Attributes of the relationship set (if any) — columns

® Multiplicity of the relationship set determines the key of
the table

Enroll (SID, CID, grade)

More examples

busband

G| o>

Marry (busband_SSN, wife SSN)
Marry (husband_SSN, wife SSN)

Translating double diamonds

% Recall that a double-diamond relationship set connects a
weak entity set to another entity set

< No need to translate because the relationship is implicit in
the weak entity set’s translation

RoomInBuilding
(room_building_name, room_number,
building_name)

is subsumed by

Rooms (building_name, room_number, capacity)

10

Translating subclasses & ISA (approach 1)

% Entity-in-all-superclasses approach (“E/R style”)
= An entity is represented in the table for each subclass to which it
belongs

= A table includes only the attributes directly attached to the
corresponding entity set, plus the inherited key

Course (CID, title)
€ Student (SID, name)
Enroll (SID, CID)
(444, “D444”) € GradStudent (SID, office)

(444, “Apu”)
(142, “Bare”)

GradStudents

Translating subclasses & ISA (approach 2)“

< Entity-in-most-specific-class approach (“OO style”)
® An entity is only represented in one table (corresponding to the
most specific entity set to which the entity belongs)

= A table includes the attributes attached to the corresponding
entity set, plus all inherited attributes

Course (CID, title)
(142, “Bart”) € Student (SID, name)

Enroll (SID, CID)
(444, “Apu”, “D444”) € GradStudent (SID, name, office)

Translating subclasses & ISA (approach 3)

< All-entities-in-one-table approach (“NULL style”)
® One relation for the root entity set, with all attributes found
anywhere in the network of subclasses

= Use a special NULL value in columns that are not relevant for a

particular entity

Courses

Course (CID, title)
€ Student (SID, name, office)
Enroll SID, CID)

(444, “Apu”, “D444”
(142, “Bart”, NULL)

Comparison of three approaches

< Entity-in-all-superclasses
= Student (SID, name), GradStudent (SID, office)
= Pro: All students are found in one table
= Con: Attributes of grad students are scattered in different tables
< Entity-in-most-specific-class
= Student (SID, name), GradStudent (SID, name, office)
® Pro: All attributes of grad students are found in one table
= Con: Students are scattered in different tables
< All-entities-in-one-table
= Student (SID, name, office)
= Pro: Everything is in one table

= Con: Too many NULL’s; complicated if class hierarchy is complex

A complete example

Train (number, engineer)

LocalTrain (number) @

ExpressTrain (number)

LocalTrainStop (local_train_number, station_name, time)

Station (name, address)

LocalStation (name) ExpressTrainStop (express_train_number, express_station_name, time
ExpressStation (name) Note that keys for Local/ExpressTrainStop

come from assumptions not encoded in the E/R design

Simplifications and refinements

Train (number, engineer), LocalTrain (number), ExpressTrain (number)
Station (name, address), LocalStation (name), ExpressStation (name)
LocalTrainStop (local_train_number, station_name, time)
ExpressTrainStop (express_train_number, express_station_name, time)

« Eliminate Loca/Train table
= Can be computed as 7, (Train) — ExpressTrain

= Slightly harder to check that local_train_number is indeed
a local train number

% Eliminate LocalStation table

® It can be computed as 7,,,,,,, (Station) — ExpressStation

An alternative design

Train (number, engineer, type)

Station (name, address, type)

TrainStop (train_number, station_name, time)

< Encode the type of train/station as a column rather
than creating subclasses

< Some constraints are no longer captured
= Type must be either “local” or “express”
= Express trains only stop at express stations

“ Fortunately, they can be expressed/declared explicitly as
database constraints in SQL

= Arguably a better design because it is simpler!

Design principles

< KISS
= Keep It Simple, Stupid
% Avoid redundancy

= Redundancy wastes space, complicates updates and
deletes, promotes inconsistency

% Capture essential constraints, but don’t introduce
unnecessary restrictions
+ Use your common sense

® Warning: Mechanical translation procedures given in
this lecture are no substitute for your own judgment

