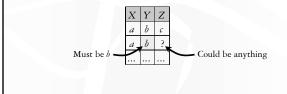


Announcements (September 12)


- ✤ Homework #1 due next Tuesday
- * Help session this Wednesday
 - 4:30pm or 5:30pm?
 - D344 LSRC
 - Email reminder tonight
- Course project assigned today
 - Choice of "standard" or "open"
 - Milestone 1 right after fall break
 But plan/start early!!!

Motivation			3
	SID name	CID	
	142 Bart	CPS116	
	142 Bart	CPS114	
	857 Lisa	CPS116	
	857 Lisa	CPS130	
 How do we tel StudentEnroll (S 	0	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	· · · · · · · · · · · · · · · · · · ·	ecause the name of a stu for each course the stude	
 How about a synchrony removing reduced 		oach to detecting an gns?	d

Dependencies, decompositions, and normal forms

- * A functional dependency (FD) has the form $X \to Y$, where X and Y are sets of attributes in a relation R
- * $X \to Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y

FD examples Address (street_address, city, state, zip)

Keys redefined using FD's

A set of attributes K is a key for a relation R if

- $\bigstar K \rightarrow$ all (other) attributes of R
 - That is, K is a "super key"
- * No proper subset of K satisfies the above condition
 - That is, K is minimal

Reasoning with FD's

Given a relation R and a set of FD's \mathcal{F}

- \bullet Does another FD follow from \mathcal{F} ?
 - Are some of the FD's in \mathcal{F} redundant (i.e., they follow from the others)?
- * Is K a key of R?
 - What are all the keys of R?

Attribute closure

 \diamond Given *R*, a set of FD's \mathcal{F} that hold in *R*, and a set of attributes *Z* in *R*:

The closure of Z (denoted Z^+) with respect to \mathcal{F} is the set of all attributes $\{A_1, A_2, \ldots\}$ functionally determined by Z (that is, $Z \rightarrow A_1 A_2 \ldots$)

- * Algorithm for computing the closure
 - Start with closure = Z
 - If $X \to Y$ is in \mathcal{F} and X is already in the closure, then also add Y to the closure
 - Repeat until no more attributes can be added

A more complex example

StudentGrade (SID, name, email, CID, grade)

(Not a good design, and we will see why later)

Example of computing closure

${\boldsymbol{\ast}} \; {\mathcal{F}} \, {\rm includes} :$

- SID \rightarrow name, email
- $email \rightarrow SID$
- SID, CID \rightarrow grade
- $\{ CID, email \}^+ = ?$
- \bullet email \rightarrow SID
 - Add SID; closure is now { CID, email, SID }
- $\texttt{SID} \rightarrow \textit{name}, \textit{email}$
 - Add name, email; closure is now { CID, email, SID, name }
- $\texttt{SID}, CID \rightarrow grade$
 - Add grade; closure is now all the attributes in StudentGrade

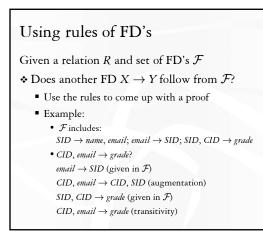
11

12

Using attribute closure

Given a relation R and set of FD's ${\cal F}$

 \diamond Does another FD $X \to Y$ follow from \mathcal{F} ?


- ${\ensuremath{\,^{-}}}$ Compute X^+ with respect to ${\ensuremath{\mathcal F}}$
- If $Y \subseteq X^+$, then $X \to Y$ follow from \mathcal{F}

 \bullet Is K a key of R?

Rules of FD's

* Armstrong's axioms

- Reflexivity: If $Y \subseteq X$, then $X \to Y$
- Augmentation: If $X \to Y$, then $XZ \to YZ$ for any Z
- Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- Rules derived from axioms
 - Splitting: If $X \to YZ$, then $X \to Y$ and $X \to Z$
 - Combining: If $X \to Y$ and $X \to Z$, then $X \to YZ$

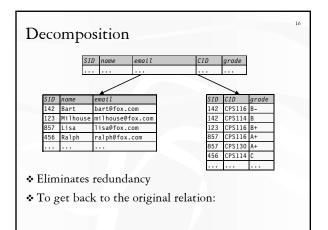
13

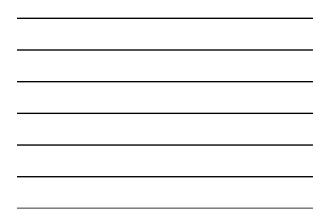
14

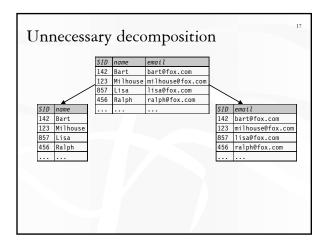
15

Non-key FD's

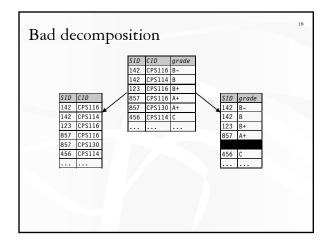
- ♦ Consider a non-trivial FD $X \rightarrow Y$ where X is not a super key
 - Since *X* is not a super key, there are some attributes (say *Z*) that are not functionally determined by *X*

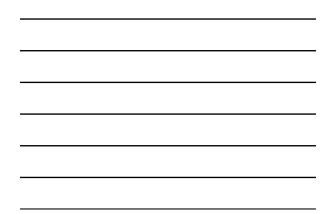


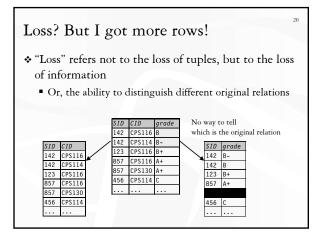

That a is always associated with b is recorded by multiple rows: redundancy, update anomaly, deletion anomaly


Example of redundancy

- StudentGrade (SID, name, email, CID, grade)
- \Rightarrow SID \rightarrow name, email


142 142	Bart Bart	bart@fox.com bart@fox.com	CPS116 CPS114	B
123			CPS114	
357	Lisa	lisa@fox.com	CPS116	A+
857	Lisa	lisa@fox.com	CPS130	A+
456	Ralph	ralph@fox.com	CPS114	С





Lossless join decomposition

- * Decompose relation R into relations S and T
 - $attrs(R) = attrs(S) \cup attrs(T)$
 - $S = \pi_{attrs(S)}(R)$
 - $T = \pi_{attrs(T)}(R)$
- ♦ The decomposition is a lossless join decomposition if, given known constraints such as FD's, we can guarantee that $R = S \bowtie T$
- Any decomposition gives R ⊆ S ⋈ T (why?)
 A lossy decomposition is one with R ⊂ S ⋈ T

Questions about decomposition

- * When to decompose
- How to come up with a correct decomposition (i.e., lossless join decomposition)

21

An answer: BCNF

 \clubsuit A relation R is in Boyce-Codd Normal Form if

• For every non-trivial FD $X \to Y$ in R, X is a super key

22

24

• That is, all FDs follow from "key \rightarrow other attributes"

* When to decompose

- As long as some relation is not in BCNF
- How to come up with a correct decomposition
 - Always decompose on a BCNF violation (details next)
 Then it is guaranteed to be a lossless join decomposition!

BCNF decomposition algorithm

- * Find a BCNF violation
 - That is, a non-trivial FD $X \to Y$ in R where X is not a super key of R
- * Decompose R into R_1 and R_2 , where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y

* Repeat until all relations are in BCNF

BCNF decomposition example

StudentGrade (SID, name, email, CID, grade) BCNF violation: $SID \rightarrow name$, email

Another example

StudentGrade (SID, name, email, CID, grade) BCNF violation: $email \rightarrow SID$

Why is BCNF decomposition lossless

- Given non-trivial $X \rightarrow Y$ in R where X is not a super key of R, need to prove:
- ♦ Anything we project always comes back in the join: $R \subseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R)$
 - Sure; and it doesn't depend on the FD
- Anything that comes back in the join must be in the original relation:
 - $R\supseteq\pi_{XY}(R)\bowtie\pi_{XZ}(R)$
 - Proof makes use of the fact that $X \to Y$

Recap

- Functional dependencies: a generalization of the key concept
- Non-key functional dependencies: a source of redundancy
- BCNF decomposition: a method for removing redundancies
 - BNCF decomposition is a lossless join decomposition
- BCNF: schema in this normal form has no redundancy due to FD's