
1

SQL: Part I

CPS 116

Introduction to Database Systems

2

Announcements (September 14)

Books should have arrived by now

Homework #1 due next Tuesday

Project milestone #1 due in 4 weeks

3

SQL

SQL: Structured Query Language
Pronounced “S-Q-L” or “sequel”

The standard query language supported by most
commercial DBMS

A brief history
IBM System R

ANSI SQL89

ANSI SQL92 (SQL2)

ANSI SQL99 (SQL3)

ANSI SQL 2003 (+OLAP, XML, etc.)

4

Creating and dropping tables
CREATE TABLE table_name
(…, column_namei column_typei, …);
DROP TABLE table_name;
Examples
create table Student (SID integer,

name varchar(30), email varchar(30),
age integer, GPA float);

create table Course (CID char(10), title varchar(100));
create table Enroll (SID integer, CID char(10));
drop table Student;
drop table Course;
drop table Enroll;
-- everything from -- to the end of the line is ignored.
-- SQL is insensitive to white space.
-- SQL is insensitive to case (e.g., ...Course... is equivalent to
-- ...COURSE...)

5

Basic queries: SFW statement

SELECT A1, A2, …, An

FROM R1, R2, …, Rm
WHERE condition;

Also called an SPJ (select-project-join) query

Equivalent (not really!) to relational algebra query
πA1, A2, …, An

(σcondition (R1 × R2 × … × Rm))

6

Example: reading a table

SELECT * FROM Student;
Single-table query, so no cross product here

WHERE clause is optional

* is a short hand for “all columns”

2

7

Example: selection and projection

Name of students under 18
SELECT name FROM Student WHERE age < 18;

When was Lisa born?
SELECT 2006 – age
FROM Student
WHERE name = ’Lisa’;
SELECT list can contain expressions

• Can also use built-in functions such as SUBSTR, ABS, etc.

String literals (case sensitive) are enclosed in single
quotes

8

Example: join

SID’s and names of students taking courses with the
word “Database” in their titles

SELECT Student.SID, Student.name
FROM Student, Enroll, Course
WHERE Student.SID = Enroll.SID
AND Enroll.CID = Course.CID
AND title LIKE ’%Database%’;
LIKE matches a string against a pattern

• % matches any sequence of 0 or more characters

Okay to omit table_name in table_name.column_name if
column_name is unique

9

Example: rename

SID’s of all pairs of classmates
Relational algebra query:
πe1.SID, e2.SID
(ρe1 Enroll e1.CID = e2.CID∧ e1.SID > e2.SID ρe2 Enroll)

SQL:
SELECT e1.SID AS SID1, e2.SID AS SID2
FROM Enroll AS e1, Enroll AS e2
WHERE e1.CID = e2.CID
AND e1.SID > e2.SID;
AS keyword is completely optional

10

A more complicated example

Titles of all courses that Bart and Lisa are taking
together

Tip: Write the FROM clause first, then WHERE, and then SELECT

FROM Student sb, Student sl, Enroll eb, Enroll el, Course c

WHERE sb.name = ’Bart’ AND sl.name = ’Lisa’

AND eb.SID = sb.SID AND el.SID = sl.SID

AND eb.CID = c.CID AND el.CID = c.CID;

SELECT c.title

11

Why SFW statements?

Out of many possible ways of structuring SQL
statements, why did the designers choose SELECT-
FROM-WHERE?

A large number of queries can be written using only
selection, projection, and cross product (or join)

Any query that uses only these operators can be written
in a canonical form: πL (σp (R1 ×… × Rm))

• Example: πR.A, S.B (R p1 S) p2 (πT.C σp3 T) =

πR.A, S.B, T.C σp1 ∧ p2 ∧ p3 (R × S × T)

SELECT-FROM-WHERE captures this canonical form

12

Set versus bag semantics

Set
No duplicates

Relational model and algebra use set semantics

Bag
Duplicates allowed

Number of duplicates is significant

SQL uses bag semantics by default

3

13

Set versus bag example

SID CID
142 CPS196
142 CPS114
123 CPS196
857 CPS196
857 CPS130
456 CPS114
... ...

SID
142
123
857
456
...

πSID Enroll

Enroll

SELECT SID
FROM Enroll;

SID
142
142
123
857
857
456
...

14

A case for bag semantics

Efficiency
Saves time of eliminating duplicates

Which one is more useful?
πGPA Student
SELECT GPA FROM Student;
The first query just returns all possible GPA’s

The second query returns the actual GPA distribution

Besides, SQL provides the option of set semantics
with DISTINCT keyword

15

Forcing set semantics

SID’s of all pairs of classmates
SELECT e1.SID AS SID1, e2.SID AS SID2
FROM Enroll AS e1, Enroll AS e2
WHERE e1.CID = e2.CID
AND e1.SID > e2.SID;

• Say Bart and Lisa both take CPS116 and CPS114
SELECT DISTINCT e1.SID AS SID1, e2.SID AS SID2
...

• With DISTINCT, all duplicate (SID1, SID2) pairs are removed
from the output

16

Operational semantics of SFW

SELECT [DISTINCT] E1, E2, …, En
FROM R1, R2, …, Rm
WHERE condition;
For each t1 in R1:

For each t2 in R2: … …
For each tm in Rm:

If condition is true over t1, t2, …, tm:
Compute and output E1, E2, …, En as a row

If DISTINCT is present
Eliminate duplicate rows in output

t1, t2, …, tm are often called tuple variables

17

SQL set and bag operations

UNION, EXCEPT, INTERSECT
Set semantics

• Duplicates in input tables, if any, are first eliminated

Exactly like set ∪, −, and ∩ in relational algebra

UNION ALL, EXCEPT ALL, INTERSECT ALL
Bag semantics
Think of each row as having an implicit count (the
number of times it appears in the table)
Bag union: sum up the counts from two tables
Bag difference: proper-subtract the two counts
Bag intersection: take the minimum of the two counts

18

Examples of bag operations

fruit
apple
apple
orange

fruit
apple
orange
orange

Bag1 Bag2

Bag1 UNION ALL Bag2
fruit
apple
apple
orange
apple
orange
orange

Bag1 EXCEPT ALL Bag2
fruit
apple

Bag1 INTERSECT ALL Bag2
fruit
apple
orange

4

19

Examples of set versus bag operations

Enroll(SID, CID), ClubMember(club, SID)
(SELECT SID FROM ClubMember)
EXCEPT
(SELECT SID FROM Enroll);

• SID’s of students who are in clubs but not taking any classes

(SELECT SID FROM ClubMember)
EXCEPT ALL
(SELECT SID FROM Enroll);

• SID’s of students who are in more clubs than classes

20

Summary of SQL features covered so far

SELECT-FROM-WHERE statements (select-project-join
queries)

Set and bag operations

Next: how to nest SQL queries

21

Table expression

Use query result as a table
In set and bag operations, FROM clauses, etc.

A way to “nest” queries

Example: names of students who are in more clubs
than classes

(SELECT SID FROM ClubMember)
EXCEPT ALL
(SELECT SID FROM Enroll)

SELECT DISTINCT name
FROM Student,

(

) AS S
WHERE Student.SID = S.SID;

22

Scalar subqueries
A query that returns a single row can be used as a value in
WHERE, SELECT, etc.
Example: students at the same age as Bart

SELECT *
FROM Student
WHERE age = (

);

SELECT age
FROM Student
WHERE name = ’Bart’

What’s Bart’s age?

Runtime error if subquery returns more than one row
Under what condition will this runtime error never occur?

• name is a key of Student

What if subquery returns no rows?
The value returned is a special NULL value, and the comparison fails

Can be used in SELECT to compute a value for an output column

23

IN subqueries

x IN (subquery) checks if x is in the result of
subquery

Example: students at the same age as (some) Bart
SELECT *
FROM Student
WHERE age IN (

);

SELECT age
FROM Student
WHERE name = ’Bart’

What’s Bart’s age?

24

EXISTS subqueries

EXISTS (subquery) checks if the result of subquery is
non-empty

Example: students at the same age as (some) Bart
SELECT *
FROM Student AS s
WHERE EXISTS (SELECT * FROM Student

WHERE name = ’Bart’
AND age = s.age);

This happens to be a correlated subquery—a subquery
that references tuple variables in surrounding queries

5

25

Operational semantics of subqueries
SELECT *
FROM Student AS s
WHERE EXISTS (SELECT * FROM Student

WHERE name = ’Bart’
AND age = s.age);

For each row s in Student
Evaluate the subquery with the appropriate value of s.age
If the result of the subquery is not empty, output s.*

The DBMS query optimizer may choose to process the
query in an equivalent, but more efficient way (example?)

26

Scoping rule of subqueries

To find out which table a column belongs to
Start with the immediately surrounding query

If not found, look in the one surrounding that; repeat if
necessary

Use table_name.column_name notation and AS
(renaming) to avoid confusion

27

Another example

SELECT * FROM Student s
WHERE EXISTS

(SELECT * FROM Enroll e
WHERE SID = s.SID
AND EXISTS

(SELECT * FROM Enroll
WHERE SID = s.SID
AND CID <> e.CID));

Students who are taking at least two courses

28

Quantified subqueries

A quantified subquery can be used as a value in a WHERE
condition

Universal quantification (for all):
… WHERE x op ALL (subquery) …

True iff for all t in the result of subquery, x op t

Existential quantification (exists):
… WHERE x op ANY (subquery) …

True iff there exists some t in the result of subquery such that x op t

Beware
• In common parlance, “any” and “all” seem to be synonyms
• In SQL, ANY really means “some”

29

Examples of quantified subqueries

Which students have the highest GPA?
SELECT *
FROM Student
WHERE GPA >= ALL

(SELECT GPA FROM Student);
SELECT *
FROM Student
WHERE NOT

(GPA < ANY (SELECT GPA FROM Student);
Use NOT to negate a condition

30

More ways of getting the highest GPA

Which students have the highest GPA?
SELECT *
FROM Student AS s
WHERE NOT EXISTS

(SELECT * FROM Student
WHERE GPA > s.GPA);

SELECT * FROM Student
WHERE SID NOT IN

(SELECT s1.SID
FROM Student AS s1, Student AS s2
WHERE s1.GPA < s2.GPA);

6

31

Summary of SQL features covered so far

SELECT-FROM-WHERE statements

Set and bag operations

Table expressions, subqueries
Subqueries allow queries to be written in more
declarative ways (recall the highest GPA query)

But they do not add much expressive power
• Try translating other forms of subqueries into [NOT] EXISTS,

which in turn can be translated into join (and difference)

Next: aggregation and grouping

32

Aggregates

Standard SQL aggregate functions: COUNT, SUM,
AVG, MIN, MAX

Example: number of students under 18, and their
average GPA

SELECT COUNT(*), AVG(GPA)
FROM Student
WHERE age < 18;
COUNT(*) counts the number of rows

33

Aggregates with DISTINCT

Example: How many students are taking classes?

SELECT COUNT(DISTINCT SID)
FROM Enroll;

is equivalent to:

SELECT COUNT(*)
FROM (SELECT DISTINCT SID,

FROM Enroll);

34

GROUP BY

SELECT … FROM … WHERE …
GROUP BY list_of_columns;

Example: find the average GPA for each age group
SELECT age, AVG(GPA)
FROM Student
GROUP BY age;

35

Operational semantics of GROUP BY
SELECT … FROM … WHERE … GROUP BY …;

Compute FROM (×)
Compute WHERE (σ)
Compute GROUP BY: group rows according to the
values of GROUP BY columns
Compute SELECT for each group (π)

For aggregation functions with DISTINCT inputs, first
eliminate duplicates within the group

Number of groups = number of rows in the final
output

36

Example of computing GROUP BY
SELECT age, AVG(GPA) FROM Student GROUP BY age;

SID name age GPA
142 Bart 10 2.3
857 Lisa 8 4.3
123 Milhouse 10 3.1
456 Ralph 8 2.3
... SID name age GPA

142 Bart 10 2.3
123 Milhouse 10 3.1
857 Lisa 8 4.3
456 Ralph 8 2.3
...

Compute GROUP BY: group
rows according to the values
of GROUP BY columns

Compute SELECT for each group

age AVG_GPA
10 2.7
8 3.3
... ...

7

37

Aggregates with no GROUP BY

An aggregate query with no GROUP BY clause
represent a special case where all rows go into one
group
SELECT AVG(GPA) FROM Student;

SID name age GPA
142 Bart 10 2.3
857 Lisa 8 4.3
123 Milhouse 10 3.1
456 Ralph 8 2.3
...

SID name age GPA
142 Bart 10 2.3
857 Lisa 8 4.3
123 Milhouse 10 3.1
456 Ralph 8 2.3
...

Group all rows
into one group

AVG_GPA
3

Compute aggregate
over the group

38

Restriction on SELECT

If a query uses aggregation/group by, then every
column referenced in SELECT must be either

Aggregated, or

A GROUP BY column

This restriction ensures that any SELECT expression
produces only one value for each group

39

Examples of invalid queries

SELECT SID, age FROM Student GROUP BY age;
Recall there is one output row per group

There can be multiple SID values per group

SELECT SID, MAX(GPA) FROM Student;
Recall there is only one group for an aggregate query
with no GROUP BY clause

There can be multiple SID values

Wishful thinking (that the output SID value is the one
associated with the highest GPA) does NOT work

Another way of writing the max GPA query?

40

HAVING

Used to filter groups based on the group properties
(e.g., aggregate values, GROUP BY column values)

SELECT … FROM … WHERE … GROUP BY …
HAVING condition;

Compute FROM (×)

Compute WHERE (σ)

Compute GROUP BY: group rows according to the values
of GROUP BY columns

Compute HAVING (another σ over the groups)

Compute SELECT (π) for each group that passes HAVING

41

HAVING examples

Find the average GPA for each age group over 10
SELECT age, AVG(GPA)
FROM Student
GROUP BY age
HAVING age > 10;
Can be written using WHERE without table expressions

List the average GPA for each age group with more than a
hundred students

SELECT age, AVG(GPA)
FROM Student
GROUP BY age
HAVING COUNT(*) > 100;
Can be written using WHERE and table expressions

42

Summary of SQL features covered so far

SELECT-FROM-WHERE statements

Set and bag operations

Table expressions, subqueries

Aggregation and grouping
More expressive power than relational algebra

Next: ordering output rows

8

43

ORDER BY

SELECT [DISTINCT] ...
FROM … WHERE … GROUP BY … HAVING …
ORDER BY output_column [ASC | DESC], …;
ASC = ascending, DESC = descending

Operational semantics
After SELECT list has been computed and optional
duplicate elimination has been carried out,
sort the output according to ORDER BY specification

44

ORDER BY example

List all students, sort them by GPA (descending)
and name (ascending)

SELECT SID, name, age, GPA
FROM Student
ORDER BY GPA DESC, name;
ASC is the default option

Strictly speaking, only output columns can appear in
ORDER BY clause (although some DBMS support more)

Can use sequence numbers instead of names to refer to
output columns: ORDER BY 4 DESC, 2;

45

Summary of SQL features covered so far

SELECT-FROM-WHERE statements

Set and bag operations

Table expressions, subqueries

Aggregation and grouping

Ordering

Next: NULL’s, outerjoins, data modification,
constraints, …

