
1

SQL: Part III

CPS 116

Introduction to Database Systems

2

Announcements (September 21)

Homework #2 due next Thursday

Homework #1 sample solution available today
Hardcopies only

Check the handout box outside my office if you did not
pick one up during the lecture

Project milestone #1 due in 3 weeks
Come to my office hours if you want to chat about
project ideas

3

“Active” data

Constraint enforcement: When an operation violates
a constraint, abort the operation or try to “fix” data

Example: enforcing referential integrity constraints

Generalize to arbitrary constraints?

Data monitoring: When something happens to the
data, automatically execute some action

Example: When price rises above $20 per share, sell

Example: When enrollment is at the limit and more
students try to register, email the instructor

4

Triggers

A trigger is an event-condition-action (ECA) rule
When event occurs, test condition; if condition is
satisfied, execute action

Example:
Event: whenever there comes a new student…

Condition: with GPA higher than 3.0…

Action: then make him/her take CPS116!

5

Trigger example

CREATE TRIGGER CPS116AutoRecruit
AFTER INSERT ON Student
REFERENCING NEW ROW AS newStudent
FOR EACH ROW
WHEN (newStudent.GPA > 3.0)
INSERT INTO Enroll

VALUES(newStudent.SID, ’CPS116’);

Event

Condition

Action

6

Trigger options

Possible events include:
INSERT ON table
DELETE ON table
UPDATE [OF column] ON table

Granularity—trigger can be activated:
FOR EACH ROW modified

FOR EACH STATEMENT that performs modification

Timing—action can be executed:
AFTER or BEFORE the triggering event

2

7

Transition variables
OLD ROW: the modified row before the triggering event
NEW ROW: the modified row after the triggering event
OLD TABLE: a hypothetical read-only table containing all
modified rows before the triggering event
NEW TABLE: a hypothetical table containing all modified
rows after the triggering event
Not all of them make sense all the time, e.g.

AFTER INSERT statement-level triggers
• Can use only NEW TABLE

BEFORE DELETE row-level triggers
• Can use only OLD ROW

etc.

8

Statement-level trigger example

CREATE TRIGGER CPS116AutoRecruit
AFTER INSERT ON Student
REFERENCING NEW TABLE AS newStudents
FOR EACH STATEMENT
INSERT INTO Enroll
(SELECT SID, ’CPS116’
FROM newStudents
WHERE GPA > 3.0);

9

BEFORE trigger example

Never give faculty more than 50% raise in one update

CREATE TRIGGER NotTooGreedy
BEFORE UPDATE OF salary ON Faculty
REFERENCING OLD ROW AS o, NEW ROW AS n
FOR EACH ROW
WHEN (n.salary > 1.5 * o.salary)
SET n.salary = 1.5 * o.salary;
BEFORE triggers are often used to “condition” data

Another option is to raise an error in the trigger body to
abort the transaction that caused the trigger to fire

10

Statement- vs. row-level triggers

Why are both needed?
Certain triggers are only possible at statement level

If the average GPA of students inserted by this
statement exceeds 3.0, do …

Simple row-level triggers are easier to implement
and may be more efficient

Statement-level triggers require significant amount of
state to be maintained in OLD TABLE and NEW TABLE
However, a row-level trigger does get fired for each row,
so complex row-level triggers may be inefficient for
statements that generate lots of modifications

11

Another statement-level trigger

Give faculty a raise if GPA’s in one update statement are all
increasing

CREATE TRIGGER AutoRaise
AFTER UPDATE OF GPA ON Student
REFERENCING OLD TABLE AS o, NEW TABLE AS n
FOR EACH STATEMENT
WHEN (NOT EXISTS(SELECT * FROM o, n

WHERE o.SID = n.SID
AND o.GPA >= n.GPA))

UPDATE Faculty SET salary = salary + 1000;
A row-level trigger would be difficult to write in this case

12

System issues

Recursive firing of triggers
Action of one trigger causes another trigger to fire

Can get into an infinite loop
• Some DBMS restrict trigger actions

• Most DBMS set a maximum level of recursion (16 in DB2)

Interaction with constraints (very tricky to get right!)
When do we check if a triggering event violates constraints?

• After a BEFORE trigger (so the trigger can fix a potential violation)

• Before an AFTER trigger

AFTER triggers also see the effects of, say, cascaded deletes caused
by referential integrity constraint violations

(Based on DB2; other DBMS may implement a different policy)

3

13

Views

A view is like a “virtual” table
Defined by a query, which describes how to compute the
view contents on the fly

DBMS stores the view definition query instead of view
contents

Can be used in queries just like a regular table

14

Creating and dropping views

Example: CPS116 roster
CREATE VIEW CPS116Roster AS
SELECT SID, name, age, GPA
FROM Student
WHERE SID IN (SELECT SID FROM Enroll

WHERE CID = ’CPS116’);

To drop a view
DROP VIEW view_name;

Called “base tables”

15

Using views in queries

Example: find the average GPA of CPS116 students
SELECT AVG(GPA) FROM CPS116Roster;
To process the query, replace the reference to the view by
its definition

SELECT AVG(GPA)
FROM (SELECT SID, name, age, GPA

FROM Student
WHERE SID IN (SELECT SID

FROM Enroll
WHERE CID = ’CPS116’));

16

Why use views?

To hide data from users

To hide complexity from users

Logical data independence
If applications deal with views, we can change the
underlying schema without affecting applications

Recall physical data independence: change the physical
organization of data without affecting applications

To provide a uniform interface for different
implementations or sources

Real database applications use tons of views

17

Modifying views

Does not seem to make sense since views are virtual

But does make sense if that is how users see the
database

Goal: modify the base tables such that the
modification would appear to have been
accomplished on the view

18

A simple case

CREATE VIEW StudentGPA AS
SELECT SID, GPA FROM Student;

DELETE FROM StudentGPA WHERE SID = 123;

translates to:

DELETE FROM Student WHERE SID = 123;

4

19

An impossible case

CREATE VIEW HighGPAStudent AS
SELECT SID, GPA FROM Student
WHERE GPA > 3.7;

INSERT INTO HighGPAStudent
VALUES(987, 2.5);
No matter what you do on Student, the inserted row
will not be in HighGPAStudent

20

A case with too many possibilities

CREATE VIEW AverageGPA(GPA) AS
SELECT AVG(GPA) FROM Student;

Note that you can rename columns in view definition

UPDATE AverageGPA SET GPA = 2.5;

Set everybody’s GPA to 2.5?

Adjust everybody’s GPA by the same amount?

Just lower Lisa’s GPA?

21

SQL92 updateable views

More or less just single-table selection queries
No join

No aggregation

No subqueries

Arguably somewhat restrictive

Still might get it wrong in some cases
See the slide titled “An impossible case”

Adding WITH CHECK OPTION to the end of the view
definition will make DBMS reject such modifications

22

Indexes

An index is an auxiliary persistent data structure
Search tree (e.g., B+-tree), lookup table (e.g., hash table), etc.

More on indexes in the second half of this course!

An index on R.A can speed up accesses of the form
R.A = value

R.A > value (sometimes; depending on the index type)

An index on (R.A1, …, R.An) can speed up
R.A1 = value1 ∧ … ∧ R.An = valuen
(R.A1 , … R.An) > (value1, …, valuen) (again depends)

Is an index on (R.A, R.B) equivalent to one on (R.B, R.A)?

How about an index on R.A plus another index on R.B?

23

Examples of using indexes

SELECT * FROM Student WHERE name = ’Bart’
Without an index on Student.name: must scan the entire table if
we store Student as a flat file of unordered rows
With index: go “directly” to rows with name = ’Bart’

SELECT * FROM Student, Enroll
WHERE Student.SID = Enroll.SID;

Without any index: for each Student row, scan the entire Enroll
table for matching SID

• Sorting could help

With an index on Enroll.SID: for each Student row, directly look up
Enroll rows with matching SID

24

Creating and dropping indexes in SQL

CREATE [UNIQUE] INDEX index_name ON
table_name(column_name1, …, column_namen);

With UNIQUE, the DBMS will also enforce that
{column_name1, …, column_namen} is a key of table_name

DROP INDEX index_name;

Typically, the DBMS will automatically create
indexes for PRIMARY KEY and UNIQUE constraint
declarations

5

25

Choosing indexes to create

More indexes = better performance?

Indexes take space

Indexes need to be maintained when data is updated

Indexes have one more level of indirection

Optimal index selection depends on both query and
update workload and the size of tables

Automatic index selection is still an area of active
research

26

Summary of SQL features covered so far

Query

Modification

Constraints

Triggers

Views

Indexes

Next: transactions

