
1

SQL: Transactions

CPS 116

Introduction to Database Systems

2

Announcements (September 26)

Homework #2 due this Thursday
Help session tomorrow (Wednesday) at 5:30pm in D344

If you missed Homework #1 sample solution, pick 
one up from the handout box outside my office

Project milestone #1 due in 2 ½ weeks
Come to my office hours if you want to chat about 
project ideas

Midterm in class next Thursday (October 5)
A sample midterm will be available Thursday

3

Transactions

A transaction is a sequence of database operations 
with the following properties (ACID):

Atomic: Operations of a transaction are executed all-or-
nothing, and are never left “half-done”
Consistency: Assume all database constraints are satisfied 
at the start of a transaction, they should remain satisfied 
at the end of the transaction
Isolation: Transactions must behave as if they were 
executed in complete isolation from each other
Durability: If the DBMS crashes after a transaction 
commits, all effects of the transaction must remain in the 
database when DBMS comes back up



2

4

SQL transactions
A transaction is automatically started when a user executes 
an SQL statement
Subsequent statements in the same session are executed as 
part of this transaction

Statements see changes made by earlier ones in the same 
transaction
Statements in other concurrently running transactions do not see
these changes

COMMIT command commits the transaction
Its effects are made final and visible to subsequent transactions

ROLLBACK command aborts the transaction
Its effects are undone

5

Fine prints

Schema operations (e.g., CREATE TABLE) implicitly 
commit the current transaction

Because it is often difficult to undo a schema operation

Many DBMS support an AUTOCOMMIT feature, 
which automatically commits every single statement

For DB2:
• db2 command-line processor turns it on by default

• You can turn it off with option +c

More examples to come when we cover database API’s

6

Atomicity

Partial effects of a transaction must be undone when
User explicitly aborts the transaction using ROLLBACK

• E.g., application asks for user confirmation in the last step and 
issues COMMIT or ROLLBACK depending on the response 

The DBMS crashes before a transaction commits

Partial effects of a modification statement must be 
undone when any constraint is violated

However, only this statement is rolled back; the 
transaction continues

How is atomicity achieved?
Logging (to support undo)



3

7

Durability

Effects of committed transactions must survive 
DBMS crashes

How is durability achieved?
Forcing all changes to disk at the end of every 
transaction?

Logging (to support redo)

8

Consistency

Consistency of the database is guaranteed by 
constraints and triggers declared in the database 
and/or transactions themselves

Whenever inconsistency arises, abort the statement or 
transaction, or (with deferred constraint checking or 
application-enforced constraints) fix the inconsistency 
within the transaction

9

Isolation

Transactions must appear to be executed in a serial 
schedule (with no interleaving operations)

For performance, DBMS executes transactions using 
a serializable schedule

In this schedule, operations from different transactions 
can interleave and execute concurrently

But the schedule is guaranteed to produce the same 
effects as a serial schedule

How is isolation achieved?
Locking, multi-version concurrency control, etc.



4

10

SQL isolation levels

Strongest isolation level: SERIALIZABLE
Complete isolation

SQL default

Weaker isolation levels: REPEATABLE READ, READ
COMMITTED, READ UNCOMMITTED

Increase performance by eliminating overhead and 
allowing higher degrees of concurrency

Trade-off: sometimes you get the “wrong” answer

11

READ UNCOMMITTED
Can read “dirty” data

A data item is dirty if it is written by an uncommitted transaction

Problem: What if the transaction that wrote the dirty data 
eventually aborts?

Example: wrong average
-- T1: -- T2:
UPDATE Student
SET GPA = 3.0
WHERE SID = 142; SELECT AVG(GPA)

FROM Student;
ROLLBACK;

COMMIT;

12

READ COMMITTED
No dirty reads, but non-repeatable reads possible

Reading the same data item twice can produce different results

Example: different averages
-- T1: -- T2:

SELECT AVG(GPA)
FROM Student;

UPDATE Student
SET GPA = 3.0
WHERE SID = 142;
COMMIT;

SELECT AVG(GPA)
FROM Student;
COMMIT;



5

13

REPEATABLE READ

Reads are repeatable, but may see phantoms

Example: different average (still!)
-- T1: -- T2:

SELECT AVG(GPA)
FROM Student;

INSERT INTO Student
VALUES(789, ‘Nelson’, 10, 1.0);
COMMIT;

SELECT AVG(GPA)
FROM Student;
COMMIT;

14

Summary of SQL isolation levels

Syntax: At the beginning of a transaction,
SET TRANSACTION ISOLATION LEVEL 
isolation_level [READ ONLY|READ WRITE];

READ UNCOMMITTED can only be READ ONLY

ImpossibleImpossibleImpossibleSERIALIZABLE
PossibleImpossibleImpossibleREPEATABLE READ
PossiblePossibleImpossibleREAD COMMITTED
PossiblePossiblePossibleREAD UNCOMMITTED
PhantomsNon-repeatable readsDirty readsIsolation level/anomaly


