SQL: Transactions

CPS 116

Introduction to Database Systems

Announcements (September 26)

< Homework #2 due this Thursday
= Help session tomorrow (Wednesday) at 5:30pm in D344
% If you missed Homework #1 sample solution, pick
one up from the handout box outside my office
% Project milestone #1 due in 2 /> weeks

= Come to my office hours if you want to chat about
project ideas

< Midterm in class next Thursday (October 5)

= A sample midterm will be available Thursday

Transactions

< A transaction is a sequence of database operations
with the following properties (ACID):

= Atomic: Operations of a transaction are executed all-or-
nothing, and are never left “half-done”

® Consistency: Assume all database constraints are satisfied
at the start of a transaction, they should remain satisfied
at the end of the transaction

® Isolation: Transactions must behave as if they were
executed in complete isolation from each other

= Durability: If the DBMS crashes after a transaction

commits, all effects of the transaction must remain in the
database when DBMS comes back up

SQL transactions

< A transaction is automatically started when a user executes
an SQL statement

< Subsequent statements in the same session are executed as
part of this transaction

= Statements see changes made by earlier ones in the same
transaction

= Statements in other concurrently running transactions do not see
these changes

% COMMIT command commits the transaction
= Its effects are made final and visible to subsequent transactions
% ROLLBACK command aborts the transaction

= [ts effects are undone

Fine prints

% Schema operations (e.g., CREATE TABLE) implicitly
commit the current transaction
® Because it is often difficult to undo a schema operation
< Many DBMS support an AUTOCOMMIT feature,
which automatically commits every single statement
= For DB2:

¢ db2 command-line processor turns it on by default

® You can turn it off with option +C

= More examples to come when we cover database API’s

Atomicity

% Partial effects of a transaction must be undone when
= User explicitly aborts the transaction using ROLLBACK

¢ E.g., application asks for user confirmation in the last step and
issues COMMIT or ROLLBACK depending on the response

= The DBMS crashes before a transaction commits
% Partial effects of a modification statement must be
undone when any constraint is violated

= However, only this statement is rolled back; the
transaction continues

< How is atomicity achieved?
® Logging (to support undo)

Durability
% Effects of committed transactions must survive

DBMS crashes

< How is durability achieved?

= Forcing all changes to disk at the end of every
transaction?

® Logging (to support redo)

Consistency

% Consistency of the database is guaranteed by
constraints and triggers declared in the database
and/or transactions themselves

= Whenever inconsistency arises, abort the statement or
transaction, or (with deferred constraint checking or

application-enforced constraints) fix the inconsistency
within the transaction

Isolation

< Transactions must appear to be executed in a serial
schedule (with no interleaving operations)

+ For performance, DBMS executes transactions using
a serializable schedule

= In this schedule, operations from different transactions
can intetleave and execute concurrently

® But the schedule is guaranteed to produce the same
effects as a serial schedule

% How is isolation achieved?

= Locking, multi-version concurrency control, etc.

10

SQL isolation levels

% Strongest isolation level: SERTALIZABLE
= Complete isolation
= SQL default

% Weaker isolation levels: REPEATABLE READ, READ
COMMITTED, READ UNCOMMITTED

= Increase performance by eliminating overhead and
allowing higher degrees of concurrency

® Trade-off: sometimes you get the “wrong” answer

READ UNCOMMITTED

% Can read “dirty” data
= A data item is dirty if it is written by an uncommitted transaction
< Problem: What if the transaction that wrote the dirty data
eventually aborts?

< Example: wrong average

= -~ T1: -- T2:
UPDATE Student
SET GPA = 3.0
WHERE SID = 142; SELECT AVG(GPA)

FROM Student;
ROLLBACK;
COMMIT;

READ COMMITTED

< No dirty reads, but non-repeatable reads possible

® Reading the same data item twice can produce different results

< Example: different averages
= - T1: -- T2:
SELECT AVG(GPA)
FROM Student;
UPDATE Student

SET GPA = 3.0
WHERE SID = 142;
COMMIT;

SELECT AVG(GPA)
FROM Student;
COMMIT;

REPEATABLE READ

< Reads are repeatable, but may see phantoms

< Example: different average (still!)
= - T1: -- T2:
SELECT AVG(GPA)
FROM Student;
INSERT INTO Student
VALUES (789, 'Nelson', 10, 1.0);
COMMIT;
SELECT AVG(GPA)
FROM Student;
COMMIT;

Summary of SQL isolation levels

Isolation level/anomaly | Dirty reads | Non-repeatable reads | Phantoms
READ UNCOMMITTED | Possible Possible Possible
READ COMMITTED Impossible | Possible Possible
REPEATABLE READ Impossible | Impossible Possible
SERIALIZABLE Impossible | Impossible Impossible

< Syntax: At the beginning of a transaction,

SET TRANSACTION ISOLATION LEVEL
isolation_level TREAD ONLY|READ WRITE};
= READ UNCOMMITTED can only be READ ONLY

