SQL: Programming

CPS 116

Introduction to Database Systems

Announcements (September 28)

+ Homework #1 graded
< Homework #2 due today
= Solution available this weekend
< Midterm in class next Thursday (October 5)
= Open book, open notes
® Format similar to the sample midterm
¢ Solution available this weekend
= Covers everything up to next Tuesday’s lecture
= Emphasizes materials exercised in homeworks

< Check handout box if you missed any handouts!

% Project milestone #1 due in 2 weeks

Motivation

% Pros and cons of SQL
® Very high-level, possible to optimize
= Not intended for general-purpose computation
< Solutions
= Augment SQL with constructs from general-purpose
programming languages (SQL/PSM)
= Use SQL together with general-purpose programming
languages (JDBC, embedded SQL, etc.)

Impedance mismatch and a solution

< SQL operates on a set of records at a time
% Typical low-level general-purpose programming languages
operates on one record at a time
@ Solution: cursor
= Open (a result table): position the cursor before the first row

= Get next: move the cursor to the next row and return that row;
raise a flag if there is no such row

= Close: clean up and release DBMS resources
Found in virtually every database language/API
¢ With slightly different syntaxes
#"Some support more positioning and movement options,
modification at the current position (analogous to view update), etc.

Augmenting SQL: SQL/PSM

% PSM = Persistent Stored Modules

« CREATE PROCEDURE proc_name (parameter_declarations)
local _declarations
procedure_body

« CREATE FUNCTION func name (parameter declarations)
RETURNS rezurn_type
local_declarations
procedure_body

% CALL proc_name (parameters)

< Inside procedure body:
SET wvariable = CALL func_name (parameters)

SQL/PSM example

CREATE FUNCTION SetMaxGPA(IN newMaxGPA FLOAT)
RETURNS INT
-- Enforce newMaxGPA; return number of rows modified.
BEGIN
DECLARE rowsUpdated INT DEFAULT 0;
DECLARE thisGPA FLOAT;
-- A cursor to range over all students:
DECLARE studentCursor CURSOR FOR
SELECT GPA FROM Student
FOR UPDATE;
-~ Set a flag whenever there is a “not found” exception:
DECLARE noMoreRows INT DEFAULT 0;
DECLARE CONTINUE HANDLER FOR NOT FOUND
SET noMoreRows = 1;
... (see next slide) ...
RETURN rowsUpdated;
END

SQL/PSM example continued

-~ Fetch the first result row:
OPEN studentCursor;
FETCH FROM studentCursor INTO thisGPA;
-=- Loop over all result rows:
WHILE noMoreRows <> 1 DO
IF thisGPA > newMaxGPA THEN
-- Enforce newMaxGPA:
UPDATE Student SET Student.GPA = newMaxGPA
WHERE CURRENT OF studentCursor;
-- Update count:
SET rowsUpdated = rowsUpdated + 1;
END IF;
-- Fetch the next result row:
FETCH FROM studentCursor INTO thisGPA;
END WHILE;
CLOSE studentCursor;

Other SQL/PSM features

< Assignment using scalar query results
= SELECT INTO
< Other loop constructs
= FOR, REPEAT UNTIL, LOOP
< Flow control
= GOTO
< Exceptions
= SIGNAL, RESIGNAL

% For more DB2-specific information, check out
Developing SQL and External Routines

= Available as part of DB2 v9 manual collection, or directly as
fep://fep.software.ibm.com/ps/products/db2/info/ve9/pdf/lecter/en_US/db2a3e90.pdf

Interfacing SQL with another languag69

% API approach
® SQL commands are sent to the DBMS at runtime
= Examples: JDBC, ODBC (for C/C+ +/VB), Perl DBI
= These API’s are all based on the SQL/CLI (Call-Level
Interface) standard
< Embedded SQL approach
= SQL commands are embedded in application code

= A precompiler checks these commands at compile-time
and converts them into DBMS-specific API calls

= Examples: embedded SQL for C/C++, SQLJ (for Java)

10

Example API: JDBC

< JDBC (Java DataBase Connectivity) is an API that allows a
Java program to access databases

// Use the JDBC package:
import java.sql.*;

public class .. {

static {
// Load the JDBC driver:
try {
Class.forName("com.ibm.db2.jcc.DB2Driver");
} catch (ClassNotFoundException e) {

i

Connections

// Connection URL is a DBMS-specific string:
String url =
"jdbc:db2://Tocalhost:50000/dbcourse";
// Making a connection:
Connection con =
DriverManager.getConnection(url, user, password);

// Closing a connection:
con.close();

For clarity we are ignoring
exception handling for now

Statements

// Create an object for sending SQL statements:
Statement stmt = con.createStatement();
// Execute a query and get its results:
ResultSet rs =
stmt.executeQuery ("SELECT SID, name FROM Student");
// Work on the results:

// Execute a modification (returns the number of rows affected):
int rowsUpdated =
stmt.executeUpdate
("UPDATE Student SET name = 'Barney' WHERE SID = 142");
// Close the statement:
stmt.close();

Query results

// Execute a query and get its results:
ResultSet rs =
stmt.executeQuery ("SELECT SID, name FROM Student");
// Loop through all result rows:
while (rs.next()) {
// Get column values:
int sid = rs.getInt(1l);
String name = rs.getString(2);
// Work on sid and name:

}
// Close the ResultSet:
rs.close();

Other ResultSet features

< Move the cursor (pointing to the current row) backwards
and forwards, or position it anywhere within the
ResultSet
< Update/delete the database row corresponding to the
current result row
= Analogous to the view update problem
% Insert a row into the database
= Analogous to the view update problem
% Obtain metadata: rs.getMetaData() returns a
ResultSetMetaData object describing the output table
schema (number, order, names, types of columns, etc.)

Prepared statements: motivation

Statement stmt = con.createStatement();
for (int age=0; age<100; age+=10) {
ResultSet rs = stmt.executeQuery
("SELECT AVG(GPA) FROM Student" +
" WHERE age >= " + age + " AND age < " + (age+10));
// Work on the results:
}
< Every time an SQL string is sent to the DBMS, the DBMS
must perform parsing, semantic analysis, optimization,

compilation, and then finally execution
% These costs are incurred 10 times in the above example

% A typical application issues many queries with a small
number of patterns (with different parameter values)

Prepared statements: syntax

// Prepare the statement, using ? as placeholders for actual parameters:
PreparedStatement stmt = con.prepareStatement

("SELECT AVG(GPA) FROM Student WHERE age >= ? AND age < ?");
for (int age=0; age<100; age+=10) {

// Set actual parameter values:

stmt.setInt(1, age);

stmt.setInt(2, age+10);

ResultSet rs = stmt.executeQuery();

// Work on the results:

1

% The DBMS performs parsing, semantic analysis,
optimization, and compilation only once, when it prepares
the statement

% At execution time, the DBMS only needs to check
parameter types and validate the compiled execution plan

Transaction processing

% Set isolation level for the current transaction
= con.setTransactionIsolationLevel(/);

= Where / is one of TRANSACTION_SERIALIZABLE (default),
TRANSACTION_REPEATABLE_READ, TRANSACTION_READ_COMITTED, and
TRANSACTION_READ_UNCOMMITTED

% Set the transaction to be read-only or read/write (default)
= con.setReadOnly(true|false);
% Turn on/off AUTOCOMMIT (commits every single statement)
= con.setAutoCommit(true|false);
< Commit/rollback the current transaction (when
AUTOCOMMIT is off)
= con.commit();
= con.rollback();

Odds and ends of JDBC

% Most methods can throw SQLException
= Make sure your code catches them
= Remember to close Statement, ResultSet, etc., in finally block
= getSQLState() returns the standard SQL error code
= getMessage() returns the error message
< DataSource interface for establishing connections
= Better than through DriverManager
< Methods for examining metadata in databases

< Methods to retrieve the value of a column for all result rows
into an array without calling ResultSet.next() in a loop

< Methods to construct/execute a batch of SQL statements

JDBC drivers — Types I, 11

< Type I (bridge): translate JDBC calls to a standard
API not native to the DBMS (e.g., JDBC-ODBC
bridge)
® Driver is easy to build using existing standard API's
= Extra layer of API adds overhead
< Type II (native API, partly Java): translates JDBC
calls to DBMS-specific client API calls

= DBMS-specific non-Java client library needs to be
installed on each client

® Good performance

20

JDBC drivers — Types III, IV

< Type III (network bridge): sends JDBC requests to a
middleware server which in turn communicates with a
database

= Client JDBC driver is completely Java, easy to build, and does not
need to be DBMS-specific

= Middleware adds translation overhead
< Type IV (native protocol, full Java): converts JDBC
requests directly to native network protocol of the DBMS
= Client JDBC driver is completely Java but is also DBMS-specific
= Good performance

= Supported by, e.g., com.ibm.db2.jcc.DB2Driver

Additional Information

% Documentation for JDBC and API docs for java.sql.*
% For DB2-specific information, check out
Developing Java Applications
= Available as part of DB2 v9 manual collection, or directly as
ftp://fep.software.ibm.com/ps/products/db2/info/ve9/pdf/letter/en_US/db2a3e90.pdf
% Example code on rack040
= Web-db-beers: To obtain a copy of the source code, follow
instructions on course Web site under Programming Notes /

Tomcat Notes

= RA (less documented): /home/dbcourse/software/ra-2.0b/

22

Embedded C example

/* Declare variables to be “shared” between the application
and the DBMS: */

EXEC SQL BEGIN DECLARE SECTION;

int thisSID; float thisGPA;

EXEC SQL END DECLARE SECTION;

/* Declare a cursor: */

EXEC SQL DECLARE CPS116Student CURSOR FOR
SELECT SID, GPA FROM Student
WHERE SID IN

(SELECT SID FROM Enroll WHERE CID = 'CPS116')

FOR UPDATE;

Embedded C example continued

/* Open the cursor: *

/
EXEC SQL OPEN CPS116Student;
/* Specify exit condition: */
EXEC SQL WHENEVER NOT FOUND DO break;
/* Loop through result rows: */
while (1) {
/* Get column values for the current row: */
EXEC SQL FETCH CPS116Student INTO :thisSID, :thisGPA;
printf("SID %d: current GPA is %f\n", thisSID, thisGPA);
/* Update GPA: */
printf("Enter new GPA: ");
scanf("%f", &thisGPA);
EXEC SQL UPDATE Student SET GPA = :thisGPA
WHERE CURRENT OF CPS116Student;
}
/* Close the cursor: */
EXEC SQL CLOSE CPS116Student;

*

Pros and cons of embedded SQL

% Pros
= More compile-time checking (syntax, type, schema, ...)
= Code could be more efficient (if the embedded SQL
statements do not need to checked and recompiled at
run-time)
% Cons
= DBMS-specific

¢ Vendors have different precompilers which translate code into
different native API’s

¢ Application executable is not portable (although code is)

* Application cannot talk to different DBMS at the same time

Pros and cons of augmenting SQL

< Cons
= Already too many programming languages
= SQL is already too big

= General-purpose programming constructs complicate
optimization, and make it difficult to tell if code running
inside the DBMS is safe

= At some point, one must recognize that SQL and the
DBMS engine are not for everything!

< Pros
= More sophisticated stored procedures and triggers
= More application logic can be pushed closer to data

