SQL: Recursion

CPS 116

Introduction to Database Systems

Announcements (October 3)

<+ Homework #2 graded
= Solution was emailed during weekend
< Midterm in class this Thursday
® Open book, open notes
® Format similar to the sample midterm
* Solution was emailed during weekend
® Optional Gradiance problem set for practice is available
= Covers everything up to today’s lecture

® Emphasizes materials exercised in homeworks

% Project milestone #1 due next Thursday

A motivating example

Ape
Parent (parent, child) l
parent |[child Abe

Homer |Bart
Homer [Lisa

LERD | CRVE Homer Marge
Marge |Lisa

Abe Homer

Ape Abe Bart Lisa

< Example: find Bart’s ancestors

% “Ancestor” has a recursive definition
= X is Y’s ancestor if
* X is Y’s parent, or

® X is Z’s ancestor and Z is Y’s ancestor

Recursion in SQL

% SQL2 had no recursion
® You can find Bart’s parents, grandparents, great
grandparents, etc.

SELECT pl.parent AS grandparent
FROM Parent pl, Parent p2
WHERE pl.child = p2.parent

AND p2.child = 'Bart';

® But you cannot find all his ancestors with a single query

< SQL3 introduces recursion
= WITH clause

= Implemented in DB2 (called common table expressions)

Ancestor query in SQL3

WITH Ancestor(anc, desc) AS base case
(KSELECT parent, child FROM Parentﬂ
UNION recursion step Deﬁne} -
(SELECT al.anc, a2.desc efeletion
FROM Ancestor al, Ancestor a2
WHERE al.desc = a2.anc))
SELECT anc S,
FOW prcestor Qe

recursively

How do we compute such a recursive query?

Fixed point of a function

% If f: T — T is a function from a type T to itself, a
fixed point of fis a value x such that fix) = x
< Example: What is the fixed point of fx) = x / 2?
= 0, because f0) =0/2 =0
% To compute a fixed point of /
= Start with a “seed”: x 4= x,
= Compute f(x)
 If flx) = x, stop; x is fixed point of /
® Otherwise, x < f(x); repeat
< Example: compute the fixed point of fix) = x /2
= With seed 1: 1, 1/2, 1/4, 1/8, 1/16, ... = 0

Fixed point of a query

< A query ¢ is just a function that maps an input table
to an output table, so a fixed point of ¢ is a table T'
such thatg(T) =T

< To compute fixed point of g
= Start with an empty table: T < &
= Evaluate g over T
¢ If the result is identical to 7, stop; T is a fixed point
¢ Otherwise, let T be the new result; repeat
& Starting from & produces the unique minimal fixed

point (assuming ¢ is monotone)

Finding ancestors Parent (parent, child)

parent |child
WITH Ancestor(anc, desc) AS Homer |Bart
((SELECT parent, child FROM Parent) Homer |Lisa
UNION Marge |[Bart
(SELECT al.anc, a2.desc Marge |Lisa
FROM Ancestor al, Ancestor a2 Abe Homer
WHERE al.desc = a2.anc)) Ape Abe
< Think of it as Ancestor = g(Ancestor) O
[anc |desc }—)anc desc _[—>{anc desc desc
Homer |Bart Homer [Bart Homer |Bart
Homer |Lisa Homer |Lisa Homer |Lisa
Marge [Bart Marge |Bart Marge |Bart
Marge |[Lisa Marge |Lisa Marge |Lisa
Abe Homer Abe Homer Abe Homer
Ape Abe Ape Abe Ape Abe
Abe Bart Abe Bart
Abe Lisa Abe Lisa
Ape Homer Ape Homer
Ape Bart
Ape Lisa

Intuition behind fixed-point iteration

+ Initially, we know nothing about ancestor-
descendent relationships

+ In the first step, we deduce that parents and
children form ancestor-descendent relationships

< In each subsequent steps, we use the facts deduced
in previous steps to get more ancestor-descendent
relationships

< We stop when no new facts can be proven

10

Linear recursion

% With linear recursion, a recursive definition can
make only one reference to itself

< Non-linear:
WITH Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT al.anc, a2.desc
FROM Ancestor al, Ancestor a2
WHERE al.desc = a2.anc))

% Linear:
WITH Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT anc, child
FROM Ancestor, Parent
WHERE desc = parent))

Linear vs. non-linear recursion

% Linear recursion is easier to implement

= For linear recursion, just keep joining newly generated
Ancestor rows with Parent

= For non-linear recursion, need to join newly generated
Ancestor rows with all existing Ancestor rows
< Non-linear recursion may take fewer steps to
converge, but perform more work
= Example:a b —c—d —e
= Linear recursion takes 4 steps
= Non-linear recursion takes 3 steps

* More work: e.g., @ — has two different derivations

Mutual recursion example

% Table Natural (n) contains 1, 2, ..., 100
% Which numbers are even/odd?
= An odd number plus 1 is an even number
® An even number plus 1 is an odd number

= 1 is an odd number
WITH Even(n) AS
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM 0dd)),
0dd(n) AS
((SELECT n FROM Natural WHERE n = 1)
UNION
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Even)))

Operational semantics of WITH

« WITH R, AS Q,, ...,
R, AS Q,
Qs
* Q,,...,0, mayrefertoR,, ..., R
< Operational semantics
LR <@, .., R <@
2. Evaluate Q,, ..., Q, using the current contents of R, ..., R:
R™ 40y, ...,R™ +Q,
3. If R ¥ # R, for any /
3.1.R <= R ™, ..., R, + R ™
3.2.Goto 2.

4. Compute Q using the current contents of R, ..., R, and output
the result

”

Computing mutual recursion

WITH Even(n) AS
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM 0dd)),
0dd(n) AS
((SELECT n FROM Natural WHERE n = 1)
UNION
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Even)))

& Even = &, 0dd = &

% Even = @, 0dd = {1}

% Even = {2}, 0dd = {1}

@ Even = {2}, 0dd = {1, 3}

< Fven = {2,4}, 0dd = {1, 3}

s Even = {2, 4}, 0dd = {1, 3,5}

Fixed points are not unique

Parent (parent, chile
WITH Ancestor(anc, desc) AS @ =0)

((SELECT parent, child FROM Parent) [Parent |child anc___|desc
UNION Homer |Bart Homer [Bart
(SELECT al.anc, a2.desc Homer |Lisa Homer |Lisa
FROM Ancestor al, Ancestor a2 Marge |Bart Marge Bf’rt
WHERE al.desc = a2.anc)) Marge |Lisa Marge |Lisa
Abe Homer Abe Homer

Ape Abe Ape Abe

. Abe Bart

< There may be many other fixed points Mbe |Lisa
H g Ape Home
% But if ¢ is monotone, then all these fixed = L
pe Bart

points must contain the fixed point we Ape |Lisa
bogus |bogus

computed from fixed-point iteration
starting with @ Note that the bogus tuple
reinforces itself!

® Thus the unique minimal fixed point is the

“natural” answer to the query

Mixing negation with recursion

< If ¢ is non-monotone
= The fixed-point iteration may flip-flop and never converge
® There could be multiple minimal fixed points—so which one is the
right answer?
< Example: reward students with GPA higher than 3.9
= Those not on the Dean’s List should get a scholarship
® Those without scholarships should be on the Dean’s List

= WITH Scholarship(SID) AS
(SELECT SID FROM Student WHERE GPA > 3.9
AND SID NOT IN (SELECT SID FROM DeansList)),
DeansList(SID) AS
(SELECT SID FROM Student WHERE GPA > 3.9
AND SID NOT IN (SELECT SID FROM Scholarship))

17

Fixed-point iteration does not converge

WITH Scholarship(SID) AS
(SELECT SID FROM Student WHERE GPA > 3.9
AND SID NOT IN (SELECT SID FROM DeanslList)),
DeansList(SID) AS
(SELECT SID FROM Student WHERE GPA > 3.9
AND SID NOT IN (SELECT SID FROM Scholarship))

Student

SID |name age |GPA
857 |Lisa 8 4.3
999 |Jessica |10 [4.2

Scholarship DeansList — Scholarship DeansList

fm] —>]
[999 | [999 |

Multiple minimal fixed points

WITH Scholarship(SID) AS
(SELECT SID FROM Student WHERE GPA > 3.9
AND SID NOT IN (SELECT SID FROM DeanslList)),
DeansList(SID) AS
(SELECT SID FROM Student WHERE GPA > 3.9
AND SID NOT IN (SELECT SID FROM Scholarship))

Student

SID [name age [GPA
857 |Lisa 8 4.3
999 [Jessica [10 [4.2

Scholarship DeansList

F

Scholarship DeansList

_‘F

T

Legal mix of negation and recursion

< Construct a dependency graph
® One node for each table defined in WITH
= A directed edge R — § if R is defined in terms of §

= Label the directed edge “~” if the query defining R is not
monotone with respect to §

< Legal SQL3 recursion: no cycle containing a “~” edge

= Called stratified negation

< Bad mix: a cycle with at least one edge labeled “~”

Ancestor Scholarship DeansList

Legal! e Tllegal!

Stratified negation example

+ Find pairs of persons with no common ancestors
WITH Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent) UNION
(SELECT al.anc, a2.desc
FROM Ancestor al, Ancestor a2

WHERE al.desc = a2.anc)), O
Person(person) AS Ancestor-

((SELECT parent FROM Parent) UNION
(SELECT child FROM Parent)),

NoCommonAnc (personl, person2) AS - Person
((SELECT pl.person, p2.person
FROM Person pl, Person p2
WHERE pl.person <> p2.person)

EXCEPT

(SELECT al.desc, a2.desc

FROM Ancestor al, Ancestor a2

WHERE al.anc = a2.anc))
SELECT * FROM NoCommonAnc;

'NoCommonAnc

Evaluating stratified negation

% The stratum of a node R is the maximum number of “~”
edges on any path from R in the dependency graph

= Ance;tor: stratum 0

Ancestor
= Person: stratum O
= NoCommonAnc: stratum 1 _ | Person
< Evaluation strategy
= Compute tables lowest-stratum first NoCommonAne

® For each stratum, use fixed-point iteration on all nodes in that
stratum

* Stratum 0: Ancestor and Person

® Stratum 1: NoCommonAnc

“ Intuitively, there is no negation within each stratum

22

Summary

< SQL3 WITH recursive queries

+ Solution to a recursive query (with no negation):
unique minimal fixed point

< Computing unique minimal fixed point: fixed-point
iteration starting from &
< Mixing negation and recursion is tricky
= Jllegal mix: fixed-point iteration may not converge; there
may be multiple minimal fixed points

= Legal mix: stratified negation (compute by fixed-point
iteration stratum by stratum)

