Relational Database Design Theory Part II

CPS 116 Introduction to Database Systems

Announcements (October 12)

- ❖ Midterm graded; sample solution available
 - Please verify your grades on Blackboard
- ❖ Project milestone #1 due today

Review

- Functional dependencies
 - $X \to Y$: If two rows agree on X, they must agree on Y
 - *A generalization of the key concept
- * Non-key functional dependencies: a source of redundancy
 - Non-trivial $X \to Y$ where X is not a superkey
- * BCNF decomposition: a method for removing redundancies
 - Given R(X, Y, Z) and a BCNF violation $X \to Y$, decompose R into $R_1(X, Y)$ and $R_2(X, Z)$
 - *A lossless join decomposition
- Schema in BCNF has no redundancy due to FD's

-		

Next ❖ 3NF (BCNF is too much) * Multivalued dependencies: another source of redundancy ❖ 4NF (BCNF is not enough) Motivation for 3NF * Address (street_address, city, state, zip) street_address, city, state → zip ■ $zip \rightarrow city$, stateKeys ■ {street address, city, state} ■ {street_address, zip} ❖ BCNF? To decompose or not to decompose Address (zip, city, state) Address₂ (street_address, zip) ❖ FD's in Address₁ ❖ FD's in Address₂ ❖ Hey, where is street_address, city, state → zip? Cannot check without joining Address₁ and Address₂ back together * Problem: Some lossless join decomposition is not

dependency-preserving

* Dilemma: Should we get rid of redundancy at the expense

of making constraints harder to enforce?

3NF

- * R is in Third Normal Form (3NF) if for every non-trivial FD $X \to A$ (where A is single attribute), either
 - X is a superkey of R, or
 - A is a member of at least one key of R
 - ${\mathscr F}$ Intuitively, BCNF decomposition on $X\to A$ would "break" the key containing A
- So Address is already in 3NF
- * Tradeoff:
 - Can enforce all original FD's on individual decomposed relations
 - Might have some redundancy due to FD's

BNCF = no redundancy?

- * Student (SID, CID, club)
 - Suppose your classes have nothing to do with the clubs you join
 - FD's?
 - BNCF?
 - Redundancies?

SID	CID	club	
142	CPS116	ballet	
142	CPS116	sumo	
142	CPS114	ballet	
142	CPS114	sumo	
123	CPS116	chess	
123	CPS116	golf	

Multivalued dependencies

- ❖ A multivalued dependency (MVD) has the form X → Y, where X and Y are sets of attributes in a relation R
- $\bigstar X \twoheadrightarrow Y$ means that whenever two rows in R agree on all the attributes of X, then we can swap their Y components and get two new rows that are also in R

X	Y	Z	
а	b1	c1	
а	b2	с2	
а	b1	с2	Ŋ.
а	b2	c1	<u>_</u>

Must be in R too

MVD examples Student (SID, CID, club) ❖ SID → CID

Complete MVD + FD rules

* FD reflexivity, augmentation, and transitivity

❖ MVD augmentation: If X woheadrightarrow Y and $V \subseteq W$, then XW woheadrightarrow YV

❖ MVD transitivity: If $X woheadsymbol{ width}{ width} Y$ and $Y woheadsymbol{ width}{ width} Z$, then $X woheadsymbol{ width}{ width} Z - Y$

Replication (FD is MVD): If $X \to Y$, then $X \to Y$

Try proving things using these!

❖ Coalescence:

If $X \twoheadrightarrow Y$ and $Z \subseteq Y$ and there is some W disjoint from Y such that $W \to Z$, then $X \to Z$

An elegant solution: chase

- ❖ Given a set of FD's and MVD's \mathcal{D} , does another dependency d (FD or MVD) follow from \mathcal{D} ?
- ❖ Procedure
 - Start with the hypothesis of d, and treat them as "seed" tuples in a relation
 - Apply the given dependencies in \mathcal{D} repeatedly
 - If we apply an FD, we infer equality of two symbols
 - If we apply an MVD, we infer more tuples
 - If we infer the conclusion of *d*, we have a proof
 - Otherwise, if nothing more can be inferred, we have a counterexample

		паче				
	A	В	С	D		
	a	b1	c1	d1		
	a	b2	c2	d2		
$A \twoheadrightarrow B$	а	b2	c1	d1		
$A \rightarrow\!\!\!\!\!/ D$	a	b1	c2	d2		
$B \twoheadrightarrow C$	а	b2	c1	d2		
<i>D</i> -// C	a	b2	c2	d1		
$B \rightarrow\!$	d	b1	c2	d1		
<i>D</i> – C	d	<i>b1</i>	c1	D		

Need

Another proof by chase

❖ In R(A, B, C, D), does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

	Ha	ve		Need
Α	В	С	D	c1 = c2
d	b1	c1	d1	
а	b2	c2	d2	

$$A \rightarrow B$$
 $b1 = b2$

 $B \rightarrow C$ c1 = c2

In general, both new tuples and new equalities $\mbox{may be generated} \label{eq:may}$

Need b1 = b2 $\$

Counterexample by chase

❖ In R(A, B, C, D), does $A \rightarrow BC$ and $CD \rightarrow B$ imply that $A \rightarrow B$?

		7777			
	A	В	С	D	
	a	b1	c1	d1	
	a	b2	ε2	d2	
$A \rightarrow\!$	a	b2	c2	d1	
1 -# DC	a	b1	c1	d2	

Counterexample!

_			

4NF A relation R is in Fourth Normal Form (4NF) if

- A relation K is in Fourth Normal Form (4INF) if
- For every non-trivial MVD $X \Rightarrow Y$ in R, X is a superkey
- That is, all FD's and MVD's follow from "key → other attributes" (i.e., no MVD's, and no FD's besides key functional dependencies)
- * 4NF is stronger than BCNF
 - Because every FD is also a MVD

4NF decomposition algorithm

- ❖ Find a 4NF violation
- Decompose R into R_1 and R_2 , where
 - $\blacksquare \ R_1 \text{ has attributes } X \cup Y$
 - R_2 has attributes $X \cup Z$ (Z contains attributes not in X or Y)
- * Repeat until all relations are in 4NF
- * Almost identical to BCNF decomposition algorithm
- Any decomposition on a 4NF violation is lossless

17

3NF, BCNF, 4NF, and beyond

Anomaly/normal form	3NF	BCNF	4NF
Lose FD's?	No	Possible	Possible
Redundancy due to FD's	Possible	No	No
Redundancy due to MVD's	Possible	Possible	No

❖ Of historical interests

- 1NF: All column values must be atomic
- 2NF: Slightly more relaxed than 3NF

Summary

- Philosophy behind BCNF, 4NF: Data should depend on the key, the whole key, and nothing but the key!
- ❖ Philosophy behind 3NF:
 - ... But not at the expense of more expensive constraint enforcement!

.