Relational Database Design Theory Part II

CPS 116 Introduction to Database Systems

Announcements (October 12)

- ❖ Midterm graded; sample solution available
 - Please verify your grades on Blackboard
- ❖ Project milestone #1 due today

Review

- * Functional dependencies
 - ${lue{ }} X o Y$: If two rows agree on X, they must agree on Y
 - TA generalization of the key concept
- * Non-key functional dependencies: a source of redundancy
 - Non-trivial $X \to Y$ where X is not a superkey
 - Called a BCNF violation
- * BCNF decomposition: a method for removing redundancies
 - Given R(X, Y, Z) and a BCNF violation $X \to Y$, decompose R into $R_1(X, Y)$ and $R_2(X, Z)$
 - *A lossless join decomposition
- Schema in BCNF has no redundancy due to FD's

Next

- ❖ 3NF (BCNF is too much)
- Multivalued dependencies: another source of redundancy
- ❖ 4NF (BCNF is not enough)

Motivation for 3NF

- * Address (street address, city, state, zip)
 - street address, city, state → zip
 - $zip \rightarrow city$, state
- ❖ Keys
 - {street address, city, state}
 - {street address, zip}
- **❖** BCNF?
 - Violation: $zip \rightarrow city$, state

To decompose or not to decompose

Address₁ (zip, city, state)

Address₂ (street_address, zip)

- ❖ FD's in Address₁
 - $zip \rightarrow city$, state
- * FD's in Address,
 - None!
- ❖ Hey, where is street_address, city, state → zip?
 - Cannot check without joining Address, and Address, back together
- Problem: Some lossless join decomposition is not dependency-preserving
- Dilemma: Should we get rid of redundancy at the expense of making constraints harder to enforce?

3NF

- * R is in Third Normal Form (3NF) if for every non-trivial FD $X \to A$ (where A is single attribute), either
 - X is a superkey of R, or
 - A is a member of at least one key of R
 - FIntuitively, BCNF decomposition on $X \to A$ would "break" the key containing A
- So Address is already in 3NF
- * Tradeoff:
 - Can enforce all original FD's on individual decomposed relations
 - Might have some redundancy due to FD's


BCNF = no redundancy?

- * Student (SID, CID, club)
 - Suppose your classes have nothing to do with the clubs you join
 - FD's?
 - None
 - BCNF?
 - Yes
 - Redundancies?
 - Tons!

		club
142	CPS116	ballet
	CPS116	
142	CPS114	ballet
142	CPS114	sumo
123	CPS116	chess
123	CPS116	golf

Multivalued dependencies

- ❖ A multivalued dependency (MVD) has the form X → Y, where X and Y are sets of attributes in a relation R
- ❖ X → Y means that whenever two rows in R agree on all the attributes of X, then we can swap their Y components and get two new rows that are also in R

MVD examples

Student (SID, CID, club)

- ❖ SID → CID
- ❖ SID → club
 - Intuition: given SID, CID and club are "independent"
- ❖ SID, CID → club
 - Trivial: LHS \cup RHS = all attributes of R
- ❖ SID, CID → SID
 - Trivial: LHS ⊇ RHS

Complete MVD + FD rules

- * FD reflexivity, augmentation, and transitivity
- ❖ MVD complementation: If $X \rightarrow Y$, then $X \rightarrow attrs(R) - X - Y$
- ❖ MVD augmentation: If $X \rightarrow Y$ and $V \subseteq W$, then $XW \rightarrow YV$
- ❖ MVD transitivity: If X woheadrightarrow Y and Y woheadrightarrow Z, then X woheadrightarrow Z - Y
- * Replication (FD is MVD): If $X \to Y$, then $X \twoheadrightarrow Y$

Try proving things using these!

❖ Coalescence: If X o Y and $Z \subseteq Y$ and there is some W disjoint from Y such that W o Z, then X o Z

An elegant solution: chase

- ❖ Given a set of FD's and MVD's \mathcal{D} , does another dependency d (FD or MVD) follow from \mathcal{D} ?
- Procedure
 - Start with the hypothesis of *d*, and treat them as "seed" tuples in a relation
 - lacksquare Apply the given dependencies in ${\cal D}$ repeatedly
 - If we apply an FD, we infer equality of two symbols
 - If we apply an MVD, we infer more tuples
 - If we infer the conclusion of *d*, we have a proof
 - Otherwise, if nothing more can be inferred, we have a counterexample

10

Proof by chase

❖ In R(A, B, C, D), does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

	Have				Need					
	Α	В	С	D	I	Α	В	С	D]
	d	b1	c1	d1		a	b1	c2	d1	8
	а	b2	c2	d2	ļ	d	b2	c1	d2	ĕ.
$A \rightarrow\!$	d	b2	c1	d1						
21 // B	а	b1	c2	d2	ļ					
$B \twoheadrightarrow C$	a	b2	c1	d2						
<i>B</i> " 0	d	b2	τ2	d1	ļ					
$B \twoheadrightarrow C$	d	b1	c2	d1						
<i>B</i> " 0	d	b1	c1	d2	ļ					

Another proof by chase

❖ In R(A, B, C, D), does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

	Ha	ve	Need	
A	В	С	D	c1 = c2 %
d	b1	c1	d1	o de la companya de l
d	b2	c2	d2	

$$A \rightarrow B$$
 $b1 = b2$
 $B \rightarrow C$ $c1 = c2$

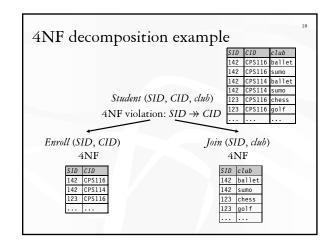
Counterexample by chase

❖ In R(A, B, C, D), does $A \rightarrow BC$ and $CD \rightarrow B$ imply that $A \rightarrow B$?

Need

b1 = b2 ♥

		паче				
	A	В	С	D		
	а	b1	c1	d1		
	а	b2	с2	d2		
$A \twoheadrightarrow BC$	d	b2	c2	d1		
$A \rightarrow BC$	а	b1	c1	d2		
	C			-1-1		


Counterexample!

4NF

- A relation R is in Fourth Normal Form (4NF) if
 - For every non-trivial MVD $X \Rightarrow Y$ in R, X is a superkey
 - That is, all FD's and MVD's follow from "key → other attributes" (i.e., no MVD's, and no FD's besides key functional dependencies)
- * 4NF is stronger than BCNF
 - Because every FD is also a MVD

4NF decomposition algorithm

- ❖ Find a 4NF violation
 - A non-trivial MVD $X \rightarrow Y$ in R where X is not a superkey
- * Decompose R into R_1 and R_2 , where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$ (Z contains attributes not in X or Y)
- * Repeat until all relations are in 4NF
- * Almost identical to BCNF decomposition algorithm
- * Any decomposition on a 4NF violation is lossless

3NF, BCNF, 4NF, and beyond

Anomaly/normal form	3NF	BCNF	4NF
Lose FD's?	No	Possible	Possible
Redundancy due to FD's	Possible	No	No
Redundancy due to MVD's	Possible	Possible	No

❖ Of historical interests

■ 1NF: All column values must be atomic

■ 2NF: Slightly more relaxed than 3NF

Summary

Philosophy behind BCNF, 4NF: Data should depend on the key, the whole key, and nothing but the key!

❖ Philosophy behind 3NF:

... But not at the expense of more expensive constraint enforcement!

20