
1

XML, DTD, and XPath

CPS 116

Introduction to Database Systems

2

Announcements (October 17)

Project milestone #1 feedback will be ready by
Thursday

Homework #3 will be assigned Thursday

3

From HTML to XML (eXtensible Markup Language)

HTML describes presentation of content
<h1>Bibliography</h1>
<p><i>Foundations of Databases</i>
Abiteboul, Hull, and Vianu

Addison Wesley, 1995
<p>…

XML describes only the content
<bibliography>
<book>
<title>Foundations of Databases</title>
<author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>

</book>
<book>…</book>

</bibliography>

Separation of content from presentation simplifies content extraction
and allows the same content to be presented easily in different looks

2

4

Other nice features of XML

Portability: Just like HTML, you can ship XML
data across platforms

Relational data requires heavy-weight protocols, e.g.,
JDBC

Flexibility: You can represent any information
(structured, semi-structured, documents, …)

Relational data is best suited for structured data

Extensibility: Since data describes itself, you can
change the schema easily

Relational schema is rigid and difficult to change

5

XML terminology

Tag names: book, title, …
Start tags: <book>, <title>, …
End tags: </book>, </title>, …
An element is enclosed by a pair of start and end
tags: <book>…</book>

Elements can be nested:
<book>…<title>…</title>…</book>
Empty elements: <is_textbook></is_textbook>

• Can be abbreviated: <is_textbook/>

Elements can also have attributes: <book ISBN=”…”
price=”80.00”>

<bibliography>
<book ISBN=”ISBN-10” price=”80.00”>

<title>Foundations of Databases</title>
<is_textbook/>
<author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>

</book>…
</bibliography>

6

Well-formed XML documents

A well-formed XML document

Follows XML lexical conventions
Wrong: <section>We show that x < 0…</section>
Right: <section>We show that x < 0…</section>

• Other special entities: > becomes > and & becomes &

Contains a single root element

Has tags that are properly matched and elements that are
properly nested

Right:
<section>…<subsection>…</subsection>…</section>

Wrong:
<section>…<subsection>…</section>…</subsection>

3

7

More XML features

Comments: <!-- Comments here -->
CDATA: <![CDATA[Tags: <book>,…]]>

ID’s and references
<person id=”o12”><name>Homer</name>…</person>
<person id=”o34”><name>Marge</name>…</person>
<person id=”o56” father=”o12” mother=”o34”><name>Bart</name>…</person>…

Namespaces allow external schemas and qualified names
<book xmlns:myCitationStyle=”http://…/mySchema”>
<myCitationStyle:title>…</myCitationStyle:title>
<myCitationStyle:author>…</myCitationStyle:author>…

</book>

Processing instructions for apps: <? …java applet… ?>
And more…

8

Valid XML documents
A valid XML document conforms to a Document Type
Definition (DTD)

A DTD is optional

A DTD specifies
A grammar for the document
Constraints on structures and values of elements, attributes, etc.

Example
<!DOCTYPE bibliography [

<!ELEMENT bibliography (book+)>
<!ELEMENT book (title, author*, publisher?, year?, section*)>
<!ATTLIST book ISBN CDATA #REQUIRED>
<!ATTLIST book price CDATA #IMPLIED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT section (title, (#PCDATA)?, section*)>

]>

9

DTD explained
<!DOCTYPE bibliography [

<!ELEMENT bibliography (book+)>

<!ELEMENT book (title, author*, publisher?, year?, section*)>

<!ATTLIST book ISBN ID #REQUIRED>

<!ATTLIST book price CDATA #IMPLIED>

bibliography is the root element of the document

bibliography consists of a sequence of one or more book elements
One or more

<bibliography>
<book ISBN=”ISBN-10” price=”80.00”>

<title>Foundations of Databases</title>
<author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>

</book>…
</bibliography>

book consists of a title, zero or more authors,
an optional publisher, and zero or more sections, in sequence

Zero or more
Zero or one

book has a required ISBN attribute which is a unique identifier

book has an optional (#IMPLIED)
price attribute which contains
character data

Other attribute types include IDREF (reference to an ID),
IDREFS (space-separated list of references), enumerated list, etc.

4

10

DTD explained (cont’d)
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT year (#PCDATA)>

<!ELEMENT section (title, (#PCDATA)?, section*)>

]>

title, author, publisher, and year all
contain parsed character data (#PCDATA)

PCDATA is text that will be parsed
(<…> will be treated as a markup tag
and < etc. will be treated as entities);
CDATA is unparsed character data

Each section starts with a title,
followed by some optional text and then
zero or more subsections

<section><title>Introduction</title>
In this section we introduce XML and DTD…
<section><title>XML</title>

XML stands for…
</section>
<section><title>DTD</title>

<section><title>Definition</title>
DTD stands for…

</section>
<section><title>Usage</title>

You can use DTD to…
</section>

</section>
</section>

11

“Deterministic” content declaration

Catch: the following declaration does not work:
<!ELEMENT pub-venue
((name, address, month, year) |
(name, volume, number, year))>

Because when looking at name, the XML processor
would not know which way to go without looking
further ahead

Requirement: content declaration must be
“deterministic” (i.e., no look-ahead required)
Can we rewrite the above declaration into an
equivalent, but deterministic one?

12

Using DTD
DTD can be included in the XML source file

<?xml version=“1.0”?>
<!DOCTYPE bibliography [
… …

]>
<bibliography>
… …
</bibliography>

DTD can be external
<?xml version=“1.0”?>
<!DOCTYPE bibliography SYSTEM “../dtds/bib.dtd”>
<bibliography>
… …
</bibliography>
<?xml version=“1.0”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>
… …
</html>

5

13

Why use DTD’s?

Benefits of not using DTD
Unstructured data is easy to represent

Overhead of DTD validation is avoided

Benefits of using DTD

14

XML versus relational data
Relational data

Schema is always fixed in
advance and difficult to change

Simple, flat table structures

Ordering of rows and columns
is unimportant

Data exchange is problematic

“Native” support in all serious
commercial DBMS

XML data

Well-formed XML does not
require predefined, fixed
schema

Nested structure; ID/IDREF(S)
permit arbitrary graphs

Ordering forced by document
format; may or may not be
important

Designed for easy exchange

Often implemented as an “add-
on” on top of relations

15

Query languages for XML

XPath
Path expressions with conditions

Building block of other standards (XQuery, XSLT,
XLink, XPointer, etc.)

XQuery
XPath + full-fledged SQL-like query language

XSLT
XPath + transformation templates

6

16

Example DTD and XML
<?xml version=“1.0”>
<!DOCTYPE bibliography [
<!ELEMENT bibliography (book+)>
<!ELEMENT book (title, author*, publisher?, year?, section*)>
<!ATTLIST book ISBN CDATA #REQUIRED>
<!ATTLIST book price CDATA #IMPLIED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT section (title, (#PCDATA)?, section*)>

]>
<bibliography>
<book ISBN=”ISBN-10” price=”80.00”>
<title>Foundations of Databases</title>
<author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>
<section>…</section>…

</book>
…

</bibliography>

17

A tree representation
bibliography

title author author author publisher year section

book book

…

…

Foundations
of Databases

Abiteboul Hull Vianu Addison
Wesley

1995

title section section …

Introduction

… …

In this
section we
introduce …

18

XPath

XPath specifies path expressions that match XML
data by navigating down (and occasionally up and
across) the tree

Example
Query: /bibliography/book/author

• Like a UNIX path

Result: all author elements reachable from root via the
path /bibliography/book/author

7

19

Basic XPath constructs

/ separator between steps in a path

name matches any child element with this tag name

* matches any child element

@name matches the attribute with this name

@* matches any attribute

// matches any descendent element or the current
element itself

. matches the current element

.. matches the parent element

20

Simple XPath examples

All book titles
/bibliography/book/title

All book ISBN numbers
/bibliography/book/@ISBN

All title elements, anywhere in the document
//title

All section titles, anywhere in the document
//section/title

Authors of bibliographical entries (suppose there are
articles, reports, etc. in addition to books)
/bibliography/*/author

21

Predicates in path expressions
[condition] matches the current element if condition evaluates

to true on the current element
Books with price lower than $50
/bibliography/book[@price<50]

XPath will automatically convert the price string to a numeric
value for comparison

Books with author “Abiteboul”
/bibliography/book[author=‘Abiteboul’]

Books with a publisher child element
/bibliography/book[publisher]

Prices of books authored by “Abiteboul”
/bibliography/book[author=‘Abiteboul’]/@price

8

22

More complex predicates

Predicates can have and’s and or’s

Books with price between $40 and $50
/bibliography/book[40<=@price and @price<=50]

Books authored by “Abiteboul” or those with price
lower than $50
/bibliography/book[author=“Abiteboul” or
@price<50]

23

Predicates involving node-sets

/bibliography/book[author=‘Abiteboul’]
There may be multiple authors, so author in
general returns a node-set (in XPath terminology)

The predicate evaluates to true as long as it
evaluates true for at least one node in the node-set,
i.e., at least one author is “Abiteboul”

Tricky query
/bibliography/book[author=‘Abiteboul’ and
author!=‘Abiteboul’]

Will it return any books?

24

XPath operators and functions

Frequently used in conditions:

x + y, x – y, x * y, x div y, x mod y

contains(x, y) true if string x contains string y
count(node-set) counts the number nodes in node-set
position() returns the “context position” (roughly, the

position of the current node in the node-set containing it)

last() returns the “context size” (roughly, the size of
the node-set containing the current node)

name() returns the tag name of the current element

9

25

More XPath examples
All elements whose tag names contain “section” (e.g.,
“subsection”)
//*[contains(name(), ‘section’)]

Title of the first section in each book
/bibliography/book/section[position()=1]/title

A shorthand: /bibliography/book/section[1]/title

Title of the last section in each book
/bibliography/book/section[position()=last()]/title

Books with fewer than 10 sections
/bibliography/book[count(section)<10]

All elements whose parent’s tag name is not “book”
//*[name()!=‘book’]/*

26

A tricky example

Suppose that price is a child element of book, and
there may be multiple prices per book

Books with some price in range [20, 50]
How about:
/bibliography/book
[price >= 20 and price <= 50]

27

De-referencing IDREF’s

id(identifier) returns the element with the unique
identifier
Suppose that books can make references to other
books

<section><title>Introduction</title>
XML is a hot topic these days; see <bookref

ISBN=“ISBN-10”/> for more details…
</section>

Find all references to books written by “Abiteboul”
in the book with “ISBN-10”
/bibliography/book[@ISBN=‘ISBN-10’]
//bookref[id(@ISBN)/author=‘Abiteboul’]

10

28

General XPath location steps

Technically, each XPath query consists of a series of
location steps separated by /
Each location step consists of

An axis: one of self, attribute, parent, child, ancestor,
ancestor-or-self, descendent, descendent-or-self,
following, following-sibling, preceding, preceding-
sibling, and namespace
A node test: either a name test (e.g., book, section, *) or a type
test (e.g., text(), node(), comment()), separated from the axis
by ::

Zero of more predicates (or conditions) enclosed in square brackets

29

Example of verbose syntax

Verbose (axis, node test, predicate):

/child::bibliography
/child::book[attribute::ISBN=‘ISBN-10’]
/descendent-or-self::node()
/child::title

Abbreviated:

/bibliography/book[@ISBN=‘ISBN-10’]//title
child is the default axis

// stands for /descendent-or-self::node()/

30

One more example
Which of the following queries correctly find the third
author in the entire input document?

//author[position()=3]

/descendant-or-self::node()
[name()=author and position()=3]

/descendant-or-self::node()
[name()=author]
[position()=3]

