XQuery

CPS 116

Introduction to Database Systems

Announcements (October 19)

<+ Homework #3 assigned today
= Due on October 31

 Project milestone #1 feedbacks available by the end
of today, or tomorrow at the latest

XQuery

< XPath + full-fledged SQL-like query language
< XQuery expressions can be
= XPath expressions
= FLWOR () expressions
= Quantified expressions
= Aggregation, sorting, and more...
< An XQuery expression in general can return a new
result XML document

= Compare with an XPath expression, which always
returns a sequence of nodes from the input document or
atomic values (boolean, number, string, etc.)

A simple XQuery based on XPath

Find all books with price lower than $50
<result>

doc("bib.xm1")/bibliography/book[@price<50]
1
</result>
« Things outside {}’s are copied to output verbatim

+ Things inside {}’s are evaluated and replaced by the results
= doc("bib.xm1") specifies the document to query
* Can be omitted if there is a default context document
® The XPath expression returns a sequence of book elements

= These elements (including all their descendents) are copied to
output

FLWR expressions

% Retrieve the titles of books published before 2000,
together with their publisher

<result>{
for $b in doc("bib.xm1")/bibliography/book
let $p := $b/publisher
where $b/year < 2000
return
<book>
{ “)/tit.I e} = $p gets the entire result of
{ $p} $b/publisher (possibly many nodes)
</book> % where: filter condition
}</result>

« for: loop
= $b ranges over the result sequence,
getting one item at a time
« let: assignment

% return: result structuring
= Invoked in the “innermost loop,” i.e.,
once for each successful binding of all
query variables that satisfies where

An equivalent formulation

% Retrieve the titles of books published before 2000,
together with their publisher

<result>{
for $b in doc("bib.xm1")/bibliography/book[year<2000]
return
<book>
{ $b/title }
{ $b/publisher }
</book>
}</result>

Another formulation

% Retrieve the titles of books published before 2000,
together with their publisher

<result>{
for $b in doc("bib.xm1")/bibliography/book,
$p in $b/publisher
where $b/year < 2000

return
<book> < Is this query equivalent to the previous two?
g ib/§1t1 e} % Yes, if there is one publisher per book
P y .
</book> % No, in general
)</resu1 t> = Two result book elements will be created for a

book with two publishers
= No result book element will be created for a
book with no publishers

Yet another formulation

% Retrieve the titles of books published before 2000,
together with their publisher

<result>{
let $b := doc("bib.xm1")/bibliography/book
where $b/year < 2000
return
<book>
{ $b/title } % Is this query correct?
{ $b/publisher } & No!
</book>

}</result> % It will produce only one output book

element, with all titles clumped together
and all publishers clumped together

% All books will be processed (as long as one is
published before 2000)

Subqueries in return

% Extract book titles and their authors; make title an
attribute and rename author to writer

<bibliography>{
for $b in doc("bib.xm1")/bibliography/book
return
<book title="{normalize-space($b/title)}">{
for $a in $b/author
return <writer>{string($a)}</writer>
}</book> ———

}</bibliography> What happens if we replace it with $a?

< normalize-space (string) removes leading and trailing spaces from

string, and replaces all internal sequences of white spaces with one
white space

10

An explicit join

% Find pairs of books that have common author(s)

<result>{
for $bl in doc("bib.xm1")//book
for $b2 in doc("bib.xm1")//book
where $bl/author = $b2/author ¢ These are string comparisons,
and $bl/title > $b2/title
return
<pair>
{$b1/title)
{$b2/title}
</pair>
}</result>

not identity comparisons!

Existentially quantified expressions

(some $var in collection satisfies condition)
= Can be used in where as a condition

% Find titles of books in which XML is mentioned in
some section

<result>{
for $b in doc("bib.xm1")//book
where (some $section in $b//section satisfies
contains(string($section), "XML"))
return $b/title
}</result>

Universally quantified expressions

(every S$var in collection satisfies condition)
= Can be used in where as a condition

% Find titles of books in which XML is mentioned in

every section
<result>{
for $b in doc("bib.xm1")//book
where (every $section in $b//section satisfies
contains(string($section), "XML"))
return $b/title
}</result>

Aggregation

« List each publisher and the average prices of all its books

<result>{
for $pub in distinct-values(doc("bib.xm1")//publisher)
let $price :=
avg(doc("bib.xm1")//book[publisher=$pub] /@price)
return
<publisherpricing>
<publisher>{$pub}</publisher>
<avgprice>{$price}</avgprice>
</publisherpricing>
}</result>

= distinct-values (collection) removes duplicates by value
* If the collection consists of elements (with no explicitly declared types), they
are first converted to strings representing their “normalized contents”
= avg (collection) computes the average of collection (assuming each
item in collectzon can be converted to a numeric value)

Sorting (a brief history)

< XPath always returns a sequence of nodes in original
document order

« for loop will respect the ordering in the sequence

< August 2002 (heep://www.w3.0rg/TR/2002/WD-xquery-20020816/)

= Introduce an operator SOrt by (sorz-by-expression-list) to output
results in a user-specified order
= Example: list all books with price higher than $100, in order by
first author; for books with the same first author, order by title
<result>{
doc("bib.xm1")//book[@price>100]
sort by (author[1], title)
}</result>

Tricky semantics

% List titles of all books, sorted by their prices
<result>{
(doc("bib.xm1")//book sort by (@price))/title
}</result>
® What is wrong?
* A path expression always returns a sequence of nodes in document order!

= Correct versions

<result>{
for $b in doc("bib.xm1")//book sort by (@price)
return $b/title

}</result>

<result>{
doc("bib.xm1")//book/title sort by (../@price)
}</result>

Current version of sorting

As of June 2006
% sort by has been ditched

% Add a new order by clause in FLWR (which now becomes
FLWOR)

< Example: list all books with price higher than $100, in
order by first author; for books with the same first author,
order by title
<result>{
for $b in doc("bib.xm1")//book[@price>100]
stable order by $b/author[1], $b/title empty least
return $b

}</result>

Summary

< Many, many more features not covered in class
< XPath is fairly mature and stable

= 1.0 is already a W3C recommendation
¢ Implemented in many systems

¢ Used in many other standards
= 2.0 is being developed jointly with XQuery
% XQuery is still evolving
= Still a W3C “candidate” recommendation
= Many vendors are coming out with implementations

= Poised to become the SQL for XML

XQuery vs. SQL

% Where did the join go?

+ Is navigational query going to destroy physical data
independence?

< Strong ordering constraint
= Can be overridden by unordered { for... }

® Why does that matter?

