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Indexing

CPS 116

Introduction to Database Systems
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Announcements (November 7)

Project milestone #2 due this Thursday

Homework #3 sample solution will be available on 
Thursday
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Basics

Given a value, locate the record(s) with this value
SELECT * FROM R WHERE A = value;
SELECT * FROM R, S WHERE R.A = S.B;

Other search criteria, e.g.
Range search

SELECT * FROM R WHERE A > value;
Keyword search

database indexing Search
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Dense and sparse indexes

Dense: one index entry for each search key value
Sparse: one index entry for each block

Records must be clustered according to the search key
123 Milhouse 10 3.1
142 Bart 10 2.3
279 Jessica 10 4
345 Martin 8 2.3

456 Ralph 8 2.3
512 Nelson 10 2.1
679 Sherri 10 3.3
697 Terri 10 3.3

857 Lisa 8 4.3
912 Windel 8 3.1

123
456
857

Sparse index
on SID

Bart
Jessica
Lisa
Martin
Milhouse
Nelson
Ralph
Sherri
Terri
Windel

Dense index
on name
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Dense versus sparse indexes

Index size

Requirement on records

Lookup

Update
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Primary and secondary indexes

Primary index
Created for the primary key of a table

Records are usually clustered according to the primary key

Can be sparse

Secondary index
Usually dense

SQL
PRIMARY KEY declaration automatically creates a primary index, 
UNIQUE key automatically creates a secondary index

Additional secondary index can be created on non-key attribute(s)
CREATE INDEX StudentGPAIndex ON Student(GPA);
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ISAM

What if an index is still too big?
Put a another (sparse) index on top of that!

ISAM (Index Sequential Access Method), more or less

100, 200, …, 901

100, 123, …, 192 901, …, 996…Index blocks 200, … 

100, 108,
119, 121

123, 129,
…

901, 907,
…

996, 997,
…… … …

Data blocks

192, 197,
…

200, 202,
…

Example: look up 197
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Updates with ISAM

Overflow chains and empty data blocks degrade 
performance

Worst case:

Example: insert 107

107

Overflow block

Example: delete 129
100, 200, …, 901

100, 123, …, 192 901, …, 996…Index blocks 200, … 

100, 108,
119, 121

123, 129,
…

901, 907,
…

996, 997,
…

… … …

Data blocks

192, 197,
…

200, 202,
…
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B+-tree

A hierarchy of intervals

Balanced (more or less): good performance guarantee

Disk-based: one node per block; large fan-out
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Sample B+-tree nodes

Max fan-out: 4

12
0

15
0

18
0

to keys 
100 · k < 120

to keys
120 · k < 150

to keys
150 · k < 180

to keys
180 · k

Non-leaf

12
0

13
0

to records with these k values;
or, store records directly in leaves

to next leaf node in sequenceLeaf

to keys
100 · k
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B+-tree balancing properties

Height constraint: all leaves at the same lowest level

Fan-out constraint: all nodes at least half full 
(except root)

Max #   Max # Min # Min #
pointers keys active pointers keys

Non-leaf f f – 1 d f / 2 e d f / 2 e – 1

Root f f – 1 2 1

Leaf f f – 1 b f / 2 c b f / 2 c
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Lookups

SELECT * FROM R WHERE k = 179;
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Not found

SELECT * FROM R WHERE k = 32;
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Range query

SELECT * FROM R WHERE k > 32 AND k < 179;
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Look up 32…

And follow next-leaf pointers

35
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Insertion

Insert a record with search key value 32
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Look up where the
inserted key
should go…

32

And insert it right there

15

Another insertion example

Insert a record with search key value 152
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Oops, node is already full!
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Node splitting
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More node splitting

In the worst case, node splitting can “propagate” all the way up to the 
root of the tree (not illustrated here)

Splitting the root introduces a new root of fan-out 2 and causes the tree to grow 
“up” by one level
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Deletion

Delete a record with search key value 130
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Look up the key
to be deleted…

And delete it
Oops, node is too empty!

If a sibling has more
than enough keys,
steal one!



7

19

Stealing from a sibling
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Remember to fix the key
in the least common ancestor
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Another deletion example

Delete a record with search key value 179
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Cannot steal from siblings
Then coalesce (merge) with a sibling!
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Coalescing
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Remember to delete the
appropriate key from parent

Deletion can “propagate” all the way up to the root of the tree (not 
illustrated here)

When the root becomes empty, the tree “shrinks” by one level
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Performance analysis

How many I/O’s are required for each operation?
h, the height of the tree (more or less)

Plus one or two to manipulate actual records

Plus O(h) for reorganization (should be very rare if f is large)

Minus one if we cache the root in memory

How big is h?
Roughly logfan-out N, where N is the number of records

B+-tree properties guarantee that fan-out is least f / 2 for all non-
root nodes 

Fan-out is typically large (in hundreds)—many keys and pointers 
can fit into one block

A 4-level B+-tree is enough for typical tables
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B+-tree in practice

Complex reorganization for deletion often is not 
implemented (e.g., Oracle, Informix)

Leave nodes less than half full and periodically reorganize

Most commercial DBMS use B+-tree instead of 
hashing-based indexes because B+-tree handles 
range queries

24

The Halloween Problem

Story from the early days of System R…

UPDATE Payroll
SET salary = salary * 1.1
WHERE salary >= 100000;

There is a B+-tree index on Payroll(salary)

The update never stopped (why?)

Solutions?
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B+-tree versus ISAM

ISAM is more static; B+-tree is more dynamic

ISAM is more compact (at least initially)
Fewer levels and I/O’s than B+-tree

Overtime, ISAM may not be balanced
Cannot provide guaranteed performance as B+-tree does
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B+-tree versus B-tree

B-tree: why not store records (or record pointers) in 
non-leaf nodes?

These records can be accessed with fewer I/O’s

Problems?
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Beyond ISAM, B-, and B+-trees

Other tree-based indexes: R-trees and variants, 
GiST, etc. 

Hashing-based indexes: extensible hashing, linear 
hashing, etc.

Text indexes: inverted-list index, suffix arrays, etc.

Other tricks: bitmap index, bit-sliced index, etc.


