
1

Query Processing

CPS 116

Introduction to Database Systems

2

Announcements (November 10)

Course project milestone #2 due today

3

Overview

Many different ways of processing the same query
Scan? Sort? Hash? Use an index?

All have different performance characteristics and/or
make different assumptions about data

Best choice depends on the situation
Implement all alternatives

Let the query optimizer choose at run-time

2

4

Notation

Relations: R, S

Tuples: r, s

Number of tuples: |R|, |S|

Number of disk blocks: B(R), B(S)

Number of memory blocks available: M

Cost metric
Number of I/O’s

Memory requirement

5

Table scan

Scan table R and process the query
Selection over R
Projection of R without duplicate elimination

I/O’s: B(R)
Trick for selection: stop early if it is a lookup by key

Memory requirement: 2 (+1 for double buffering)

Not counting the cost of writing the result out
Same for any algorithm!

Maybe not needed—results may be pipelined into
another operator

6

Nested-loop join
R p S
For each block of R, and for each r in the block:

For each block of S, and for each s in the block:
Output rs if p evaluates to true over r and s

R is called the outer table; S is called the inner table

I/O’s: B(R) + |R| ⋅ B(S)
Memory requirement: 3 (+1 for double buffering)
Improvement:

3

7

More improvements of nested-loop join

Stop early if the key of the inner table is being
matched

Make use of available memory
Stuff memory with as much of R as possible, stream S by,
and join every S tuple with all R tuples in memory

I/O’s: B(R) + d B(R) / (M – 2) e ⋅ B(S)
• Or, roughly: B(R) ⋅ B(S) / M

Memory requirement: M (as much as possible)

Which table would you pick as the outer?

8

External merge sort

Remember (internal-memory) merge sort?
Problem: sort R, but R does not fit in memory

Pass 0: read M blocks of R at a time, sort them, and
write out a level-0 run

There are d B(R) / M e level-0 sorted runs

Pass i: merge (M – 1) level-(i-1) runs at a time, and
write out a level-i run

(M – 1) memory blocks for input, 1 to buffer output
of level-i runs = d # of level-(i–1) runs / (M – 1) e

Final pass produces 1 sorted run

9

Example of external merge sort

Input: 1, 7, 4, 5, 2, 8, 3, 6, 9
Pass 0

1, 7, 4 → 1, 4, 7
5, 2, 8 → 2, 5, 8
9, 6, 3 → 3, 6, 9

Pass 1
1, 4, 7 + 2, 5, 8 → 1, 2, 4, 5, 7, 8
3, 6, 9

Pass 2 (final)
1, 2, 4, 5, 7, 8 + 3, 6, 9 → 1, 2, 3, 4, 5, 6, 7, 8, 9

4

10

Performance of external merge sort

Number of passes: d log M–1 d B(R) / M e e + 1

I/O’s
Multiply by 2 ⋅ B(R): each pass reads the entire relation
once and writes it once

Subtract B(R) for the final pass

Roughly, this is O(B(R) ⋅ log M B(R))

Memory requirement: M (as much as possible)

11

Some tricks for sorting

Double buffering
Allocate an additional block for each run

Blocked I/O
Instead of reading/writing one disk block at time,
read/write a bunch (“cluster”)

More sequential I/O’s

12

Sort-merge join

R R.A = S.B S
Sort R and S by their join attributes, and then merge

r, s = the first tuples in sorted R and S
Repeat until one of R and S is exhausted:

If r.A > s.B then s = next tuple in S
else if r.A < s.B then r = next tuple in R
else output all matching tuples, and

r, s = next in R and S
I/O’s:

5

13

Example

R: S: R R.A = S.B S:
r1.A = 1 s1.B = 1
r2.A = 3 s2.B = 2
r3.A = 3 s3.B = 3
r4.A = 5 s4.B = 3
r5.A = 7 s5.B = 8
r6.A = 7
r7.A = 8

r1 s1

r2 s3

r2 s4

r3 s3

r3 s4

r7 s5

14

Optimization of SMJ

Idea: combine join with the merge phase of merge sort

Sort: produce sorted runs of size M for R and S

Merge and join: merge the runs of R, merge the runs of S,
and merge-join the result streams as they are generated!

Merge

Merge

So
rt

ed
 r

un
s R

S

Disk Memory

Join

15

Performance of two-pass SMJ

I/O’s: 3 ⋅ (B(R) + B(S))

Memory requirement
To be able to merge in one pass, we should have enough
memory to accommodate one block from each run: M >
B(R) / M + B(S) / M

M > sqrt(B(R) + B(S))

6

16

Other sort-based algorithms

Union (set), difference, intersection
More or less like SMJ

Duplication elimination
External merge sort

• Eliminate duplicates in sort and merge

GROUP BY and aggregation
External merge sort

• Produce partial aggregate values in each run
• Combine partial aggregate values during merge
• Partial aggregate values don’t always work though

– Examples: SUM(DISTINCT …), MEDIAN(…)

17

Hash join

R R.A = S.B S

Main idea
Partition R and S by hashing their join attributes, and
then consider corresponding partitions of R and S
If r.A and s.B get hashed to different partitions, they
don’t join

Nested-loop join considers
all slots

1

2

1 2 3 4 5R

S
3
4

5

Hash join considers
only those along the diagonal

18

Partitioning phase

Partition R and S according to the same hash
function on their join attributes

M – 1 partitions of R

DiskMemory

R

Same for S

… …

7

19

Probing phase

Read in each partition of R, stream in the
corresponding partition of S, join

Typically build a hash table for the partition of R
• Not the same hash function used for partition, of course!

Disk Memory

R
partitions

S
partitions

…
…

…load

stream For each S tuple,
probe and join

20

Performance of hash join

I/O’s: 3 ⋅ (B(R) + B(S))

Memory requirement:
In the probing phase, we should have enough memory to
fit one partition of R: M – 1 ≥ B(R) / (M – 1)

M > sqrt(B(R))

We can always pick R to be the smaller relation, so:
M > sqrt(min(B(R), B(S))

21

Hash join tricks

What if a partition is too large for memory?
Read it back in and partition it again!

• See the duality in multi-pass merge sort here?

8

22

Hash join versus SMJ

(Assuming two-pass)

I/O’s: same

Memory requirement: hash join is lower
sqrt(min(B(R), B(S)) < sqrt(B(R) + B(S))

Hash join wins when two relations have very different sizes

Other factors

23

What about nested-loop join?

24

Other hash-based algorithms

Union (set), difference, intersection
More or less like hash join

Duplicate elimination
Check for duplicates within each partition/bucket

GROUP BY and aggregation
Apply the hash functions to GROUP BY attributes

Tuples in the same group must end up in the same
partition/bucket

Keep a running aggregate value for each group

9

25

Duality of sort and hash

Divide-and-conquer paradigm
Sorting: physical division, logical combination

Hashing: logical division, physical combination

Handling very large inputs
Sorting: multi-level merge

Hashing: recursive partitioning

I/O patterns
Sorting: sequential write, random read (merge)

Hashing: random write, sequential read (partition)

26

Selection using index

Equality predicate: σA = v (R)
Use an ISAM, B+-tree, or hash index on R(A)

Range predicate: σA > v (R)
Use an ordered index (e.g., ISAM or B+-tree) on R(A)

Hash index is not applicable

Indexes other than those on R(A) may be useful
Example: B+-tree index on R(A, B)

How about B+-tree index on R(B, A)?

27

Index versus table scan

Situations where index clearly wins:

Index-only queries which do not require retrieving
actual tuples

Example: πA (σA > v (R))

Primary index clustered according to search key
One lookup leads to all result tuples in their entirety

10

28

Index versus table scan (cont’d)

BUT(!):

Consider σA > v (R) and a secondary, non-clustered
index on R(A)

Need to follow pointers to get the actual result tuples

Say that 20% of R satisfies A > v
• Could happen even for equality predicates

I/O’s for index-based selection: lookup + 20% |R|

I/O’s for scan-based selection: B(R)

Table scan wins if a block contains more than 5 tuples

29

Index nested-loop join

R R.A = S.B S
Idea: use the value of R.A to probe the index on S(B)
For each block of R, and for each r in the block:

Use the index on S(B) to retrieve s with s.B = r.A
Output rs

I/O’s: B(R) + |R| · (index lookup)
Typically, the cost of an index lookup is 2-4 I/O’s
Beats other join methods if |R| is not too big
Better pick R to be the smaller relation

Memory requirement: 2

30

Zig-zag join using ordered indexes

R R.A = S.B S
Idea: use the ordering provided by the indexes on R(A) and
S(B) to eliminate the sorting step of sort-merge join

Trick: use the larger key to probe the other index
Possibly skipping many keys that don’t match

B+-tree on R(A)

B+-tree on S(B)

1 2 3 4 7 9 18

1 7 9 11 12 17 19

11

31

Summary of tricks

Scan
Selection, duplicate-preserving projection, nested-loop join

Sort
External merge sort, sort-merge join, union (set), difference,
intersection, duplicate elimination, GROUP BY and aggregation

Hash
Hash join, union (set), difference, intersection, duplicate
elimination, GROUP BY and aggregation

Index
Selection, index nested-loop join, zig-zag join

