Query Processing

CPS 116

Introduction to Database Systems

Announcements (November 10)

Course project milestone #2 due today

Overview

< Many different ways of processing the same query
= Scan? Sort? Hash? Use an index?
= All have different performance characteristics and/or
make different assumptions about data
< Best choice depends on the situation
= Implement all alternatives

= Let the query optimizer choose at run-time

Notation

% Relations: R, §

% Tuples: 7, s

« Number of tuples: |R], |S|

% Number of disk blocks: B(R), B(S)

< Number of memory blocks available: M

< Cost metric
= Number of I/O’s

® Memory requirement

Table scan

+ Scan table R and process the query

= Selection over R

= Projection of R without duplicate elimination
% 1/O’s: B(R)

= Trick for selection: stop early if it is a lookup by key
< Memory requirement: 2 (+ 1 for double buffering)
< Not counting the cost of writing the result out

= Same for any algorithm!

= Maybe not needed—results may be pipelined into
another operator

Nested-loop join

% Rpg, S
< For each block of R, and for each # in the block:
For each block of §, and for each s in the block:
Output 75 if p evaluates to true over 7 and s
= R is called the outer table; § is called the inner table
+ 1/O’s: BR) + |R| - B(S)
< Memory requirement: 3 (+1 for double buffering)

< Improvement:

More improvements of nested-loop join

+ Stop early if the key of the inner table is being
matched
% Make use of available memory

= Stuff memory with as much of R as possible, stream § by,
and join every S tuple with all R tuples in memory
" [/O’s: BR) + [BR) /(M —2)] - BE©)
® Or, roughly: B(R) - B(S) / M
= Memory requirement: M (as much as possible)

< Which table would you pick as the outer?

External merge sort

Remember (internal-memory) merge sort?
Problem: sort R, but R does not fit in memory

% Pass 0: read M blocks of R at a time, sort them, and
write out a level-0 run
® There are [B(R) /M W level-0 sorted runs
% Pass 7: merge (M — 1) level-(4-1) runs at a time, and
write out a level-7 run
= (M — 1) memory blocks for input, 1 to buffer output
= # of level-Z runs = [# of level-(i~1) runs / (M — 1) |

+ Final pass produces 1 sorted run

Example of external merge sort

% Input: 1,7,4,5,2,8,3,6,9
% Pass 0
"1,7,4—>1,4,7
"5,2,8—2,5,8
=9,6,3—3,6,9
< Pass 1
" 1,4,7+258—>1,2,4,5,7,8
=369
% Pass 2 (final)
"1,2,4,57,8+3,6,9—>1,2,3,4,5,6,7,8,9

10

Performance of external merge sort

« Number of passes: [log ,, [BR)/M]] + 1
+1/O’s
® Multiply by 2 - B(R): each pass reads the entire relation
once and writes it once
= Subtract B(R) for the final pass
= Roughly, this is OC B(R) - log , B(R))

< Memory requirement: M (as much as possible)

Some tricks for sorting

< Double buffering

= Allocate an additional block for each run

% Blocked I/O

= Instead of reading/writing one disk block at time,
read/write a bunch (“cluster”)

= More sequential I/O’s

Sort-merge join

* ROy =55
< Sort R and § by their join attributes, and then merge
r, s = the first tuples in sorted R and §
Repeat until one of R and § is exhausted:
If .A > s.B then s = next tuple in §
else if .4 < s5.B then » = next tuple in R
else output all matching tuples, and
7,5 = next in R and §
+1/O’s:

Example

R: S: Ry 55 $:
=rnd=1 =s,.B =1 Paliy
=4 =3 =5,.B =2 7553

r3.A =3 =B =3 7554
=red =5 B=3 Rl
=4 =7 =is.B =8 7354
=r,.A =7 7455
=r.Ad =28

Optimization of SM]

% Idea: combine join with the merge phase of merge sort
% Sort: produce sorted runs of size M for R and §

< Merge and join: merge the runs of R, merge the runs of S,
and merge-join the result streams as they are generated!

Dk Memory
— R
! R{ I O
E in
R — g
Merge

Performance of two-pass SM]J

+1/O’s: 3 - (B(R) + B(S))
< Memory requirement

= To be able to merge in one pass, we should have enough
memory to accommodate one block from each run: M >
B(R)/ M + B(S)/ M

= M > sqrt(B(R) + B(S))

Other sort-based algorithms

% Union (set), difference, intersection
= More or less like SMJ
< Duplication elimination
= External merge sort
* Eliminate duplicates in sort and merge
< GROUP BY and aggregation
= External merge sort
® Produce partial aggregate values in each run

* Combine partial aggregate values during merge

® Partial aggregate values don’t always work though
— Examples: SUM(DISTINCT ...), MEDIAN(...)

Hash join

SR>YG —55S
% Main idea

= Partition R and § by hashing their join attributes, and
then consider corresponding partitions of R and §

= Ifr.A and 5.B get hashed to different partitions, they

don’t join
12 R4 s
1 Nested-loop join considers
2 all slots
§ Hash join considers
7 only those along the diagonal
5

Partitioning phase

% Partition R and § according to the same hash
function on their join attributes

Memory

=
|
v

O ---0000

M — 1 partitions of R

Same for §

Probing phase

% Read in each partition of R, stream in the
corresponding partition of S, join
= Typically build a hash table for the partition of R

® Not the same hash function used for partition, of course!

Memory
+O00O000.---0
R
partitions \\> O
For each S tuple,
g probe and join
S
partitions

20

Performance of hash join

*1/0’s: 3 - (B(R) + B(S))
< Memory requirement:

® In the probing phase, we should have enough memory to
fit one partition of R: M — 1 > B(R) / (M — 1)

= M > sqrt(B(R))

= We can always pick R to be the smaller relation, so:
M > sqrt(min(B(R), B(S))

Hash join tricks

< What if a partition is too large for memory?

= Read it back in and partition it again!

® See the duality in multi-pass merge sort here?

—_——
[—
—_
—_

22

Hash join versus SMJ

(Assuming two-pass)
% 1/O’s: same
< Memory requirement: hash join is lower
= sqre(min(B(R), B(S)) < sqre(B(R) + B(S))
= Hash join wins when two relations have very different sizes

% Other factors

What about nested-loop join?

Other hash-based algorithms

% Union (set), difference, intersection

= More or less like hash join
< Duplicate elimination

® Check for duplicates within each partition/bucket
< GROUP BY and aggregation

= Apply the hash functions to GROUP BY attributes

® Tuples in the same group must end up in the same
partition/bucket

= Keep a running aggregate value for each group

Duality of sort and hash

< Divide-and-conquer paradigm
= Sorting: physical division, logical combination
® Hashing: logical division, physical combination
< Handling very large inputs
= Sorting: multi-level merge
® Hashing: recursive partitioning
% I/O patterns
= Sorting: sequential write, random read (merge)

= Hashing: random write, sequential read (partition)

26

Selection using index

< Equality predicate: 0, _ , (R)
= Use an ISAM, B*-tree, or hash index on R(A)
< Range predicate: 0, - , (R)
= Use an ordered index (e.g., ISAM or BT -tree) on R(A)

= Hash index is not applicable

% Indexes other than those on R(A) may be useful
= Example: BT -tree index on R(A4, B)

= How about B"-tree index on R(B, A)?

N
§

Index versus table scan

Situations where index clearly wins:

< Index-only queries which do not require retrieving
actual tuples
= Example: 7, (0, - , (R))

% Primary index clustered according to search key

® One lookup leads to all result tuples in their entirety

28

Index versus table scan (cont’d)

BUT(!):
« Consider 0, . , (R) and a secondary, non-clustered
index on R(A)
= Need to follow pointers to get the actual result tuples
= Say that 20% of R satisfies A > v
¢ Could happen even for equality predicates
® 1/O’s for index-based selection: lookup + 20% |R|
= I/O’s for scan-based selection: B(R)

= Table scan wins if a block contains more than 5 tuples

29

Index nested-loop join

*R>Y 558
% Idea: use the value of R.A to probe the index on S(B)
% For each block of R, and for each » in the block:
Use the index on S(B) to retrieve s with s.B = r.A
Output s

% I/O’s: B(R) + |R| - (index lookup)

= Typically, the cost of an index lookup is 2-4 I/O’s

® Beats other join methods if | R| is not too big

= Better pick R to be the smaller relation

< Memory requirement: 2

Zig-zag join using ordered indexes

* ROy —559
« Idea: use the ordering provided by the indexes on R(4) and
S(B) to eliminate the sorting step of sort-merge join
% Trick: use the larger key to probe the other index
= Possibly skipping many keys that don’t match

B*-tree on R(A)

= 2 3 4 27 D9 D8
D 7 9 i1 12 17 19

B*-tree on S(B)

Summary of tricks

% Scan
= Selection, duplicate-preserving projection, nested-loop join
< Sort
= External merge sort, sort-merge join, union (set), difference,
intersection, duplicate elimination, GROUP BY and aggregation

< Hash

® Hash join, union (set), difference, intersection, duplicate
elimination, GROUP BY and aggregation

< Index

= Selection, index nested-loop join, zig-zag join

