Query Processing

CPS 116
Introduction to Database Systems

Announcements (November 10)

\qquad

* Course project milestone \#2 due today

Overview

Many different ways of processing the same query

- Scan? Sort? Hash? Use an index?
- All have different performance characteristics and/or make different assumptions about data
* Best choice depends on the situation
- Implement all alternatives
- Let the query optimizer choose at run-time

Notation

\star Relations: R, S

* Tuples: r, s
* Number of tuples: $|R|,|S|$
* Number of disk blocks: $B(R), B(S)$
* Number of memory blocks available: M
* Cost metric
- Number of I/O's
- Memory requirement

Table scan

* Scan table R and process the query
- Selection over R
- Projection of R without duplicate elimination
* I/O's: $B(R)$
- Trick for selection: stop early if it is a lookup by key
* Memory requirement: 2 (+1 for double buffering)
\star Not counting the cost of writing the result out
- Same for any algorithm!
- Maybe not needed—results may be pipelined into another operator

Nested-loop join

\qquad

* $R \bowtie_{p} S$
* For each block of R, and for each r in the block:
\qquad
For each block of S, and for each s in the block: Output $r s$ if p evaluates to true over r and s \qquad
- R is called the outer table; S is called the inner table
\qquad
* Memory requirement: 3 (+1 for double buffering)
* Improvement:

More improvements of nested-loop join

* Stop early if the key of the inner table is being matched
* Make use of available memory
- Stuff memory with as much of R as possible, stream S by, and join every S tuple with all R tuples in memory
- I/O's: $B(R)+\lceil B(R) /(M-2)\rceil \cdot B(S)$
- Or, roughly: $B(R) \cdot B(S) / M$
- Memory requirement: M (as much as possible)
* Which table would you pick as the outer?

External merge sort

Remember (internal-memory) merge sort?
Problem: sort R, but R does not fit in memory

* Pass 0 : read M blocks of R at a time, sort them, and write out a level-0 run
- There are $\lceil B(R) / M\rceil$ level- 0 sorted runs
* Pass i : merge ($M-1$) level-($i-1$) runs at a time, and write out a level- i run
- ($M-1$) memory blocks for input, 1 to buffer output
- \# of level- i runs $=\lceil \#$ of level- $(i-1)$ runs $/(M-1)\rceil$
* Final pass produces 1 sorted run

Example of external merge sort

* Input: 1, 7, 4, 5, 2, 8, 3, 6, 9
* Pass 0
- 1, 7, $4 \rightarrow 1,4,7$
- 5, 2, $8 \rightarrow 2,5,8$
- 9, 6, $3 \rightarrow 3,6,9$

Pass 1

- $1,4,7+2,5,8 \rightarrow 1,2,4,5,7,8$
- 3, 6, 9

Pass 2 (final)

- $1,2,4,5,7,8+3,6,9 \rightarrow 1,2,3,4,5,6,7,8,9$

Performance of external merge sort

\star Number of passes: $\left\lceil\log _{M-1}\lceil B(R) / M\rceil\right\rceil+1$

* I/O's
- Multiply by $2 \cdot B(R)$: each pass reads the entire relation once and writes it once
- Subtract $B(R)$ for the final pass
- Roughly, this is $O\left(B(R) \cdot \log _{M} B(R)\right)$
* Memory requirement: M (as much as possible)

Some tricks for sorting

* Double buffering
- Allocate an additional block for each run
* Blocked I/O
- Instead of reading/writing one disk block at time, read/write a bunch ("cluster")
- More sequential I/O’s

Sort-merge join

```
*R}\mp@subsup{\bowtie}{R.A = S.B}{}
```

* Sort R and S by their join attributes, and then merge $r, s=$ the first tuples in sorted R and S Repeat until one of R and S is exhausted: If $r . A>s . B$ then $s=$ next tuple in S else if $r . A<s . B$ then $r=$ next tuple in R else output all matching tuples, and

$$
r, s=\text { next in } R \text { and } S
$$

$\%$ I/O's:
-

Example			
$R:$	$S:$	$R \bowtie_{R \cdot A}=s_{1} S:$	
$\Rightarrow r_{1} \cdot A=1$	$\Rightarrow s_{1} \cdot B=1$	$r_{1} s_{1}$	
$\Rightarrow r_{2} \cdot A=3$	$\Rightarrow s_{2} \cdot B=2$	$r_{2} s_{3}$	
$r_{3} \cdot A=3$	$\Rightarrow s_{3} \cdot B=3$	$r_{2} s_{4}$	
$\Rightarrow r_{4} \cdot A=5$	$s_{4} \cdot B=3$	$r_{3} s_{3}$	
$\Rightarrow r_{5} \cdot A=7$	$\Rightarrow s_{5} \cdot B=8$	$r_{3} s_{4}$	
$\Rightarrow r_{6} \cdot A=7$		$r_{7} s_{5}$	
$\Rightarrow r_{7} \cdot A=8$			

\qquad

$$
\begin{array}{rcc}
R: & S: & R \bowtie_{R \cdot A}=s_{5} S: \\
\Rightarrow r_{1} \cdot A=1 & \Rightarrow s_{1} \cdot B=1 & r_{1} s_{1} \\
\Rightarrow r_{2} \cdot A=3 & \Rightarrow s_{2} \cdot B=2 & r_{2} s_{3} \\
r_{3} \cdot A=3 & \Rightarrow s_{3} \cdot B=3 & r_{2} s_{4} \\
\Rightarrow r_{4} \cdot A=5 & s_{4} \cdot B=3 & r_{3} s_{3} \\
\Rightarrow r_{5} \cdot A=7 & \Rightarrow s_{5} \cdot B=8 & r_{3} s_{4} \\
\Rightarrow r_{6} \cdot A=7 & & r_{7} s_{5} \\
\Rightarrow r_{7} \cdot A=8 & &
\end{array}
$$

Optimization of SMJ

\qquad

* Idea: combine join with the merge phase of merge sort
\star Sort: produce sorted runs of size M for R and S
$*$ Merge and join: merge the runs of R, merge the runs of S, and merge-join the result streams as they are generated!

Performance of two-pass SMJ

\qquad

* I/O's: $3 \cdot(B(R)+B(S))$
\star Memory requirement
- To be able to merge in one pass, we should have enough memory to accommodate one block from each run: $M>$ $B(R) / M+B(S) / M$
- $M>\operatorname{sqrt}(B(R)+B(S))$

Other sort-based algorithms

* Union (set), difference, intersection
- More or less like SMJ
* Duplication elimination
- External merge sort
- Eliminate duplicates in sort and merge
* GROUP BY and aggregation
- External merge sort
- Produce partial aggregate values in each run
- Combine partial aggregate values during merge
- Partial aggregate values don't always work though - Examples: SUM (DISTINCT ...), MEDIAN(...)

Hash join

\qquad
$\because R \bowtie_{R . A=S . B} S$
$*$ Main idea

- Partition R and S by hashing their join attributes, and then consider corresponding partitions of R and S
- If $r . A$ and s. B get hashed to different partitions, they don't join

Nested-loop join considers all slots
Hash join considers only those along the diagonal
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Partitioning phase

Partition R and S according to the same hash function on their join attributes

Probing phase

* Read in each partition of R, stream in the corresponding partition of S, join
- Typically build a hash table for the partition of R
- Not the same hash function used for partition, of course!

Performance of hash join

* I/O's: $3 \cdot(B(R)+B(S))$
\star Memory requirement:
- In the probing phase, we should have enough memory to fit one partition of $R: M-1 \geq B(R) /(M-1)$
- $M>\operatorname{sqrt}(B(R))$
- We can always pick R to be the smaller relation, so: $M>\operatorname{sqrt}(\min (B(R), B(S))$

Hash join tricks

*What if a partition is too large for memory?

- Read it back in and partition it again!
- See the duality in multi-pass merge sort here?

Hash join versus SMJ

(Assuming two-pass)

* I/O's: same
* Memory requirement: hash join is lower
- $\operatorname{sqrt}(\min (B(R), B(S))<\operatorname{sqrt}(B(R)+B(S))$
- Hash join wins when two relations have very different sizes
* Other factors
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What about nested-loop join?

Other hash-based algorithms

※ Union (set), difference, intersection

- More or less like hash join
* Duplicate elimination
- Check for duplicates within each partition/bucket

GROUP BY and aggregation

- Apply the hash functions to GROUP BY attributes
- Tuples in the same group must end up in the same partition/bucket
- Keep a running aggregate value for each group
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Duality of sort and hash

* Divide-and-conquer paradigm
- Sorting: physical division, logical combination
- Hashing: logical division, physical combination
\star Handling very large inputs
- Sorting: multi-level merge
- Hashing: recursive partitioning
* I/O patterns
- Sorting: sequential write, random read (merge)
- Hashing: random write, sequential read (partition)

Selection using index

Equality predicate: $\sigma_{A=v}(R)$

- Use an ISAM, B^{+}-tree, or hash index on $R(A)$

Range predicate: $\sigma_{A>v}(R)$

- Use an ordered index (e.g., ISAM or B^{+}-tree) on $R(A)$
- Hash index is not applicable
* Indexes other than those on $R(A)$ may be useful
- Example: B^{+}-tree index on $R(A, B)$
- How about B^{+}-tree index on $R(B, A)$?

Index versus table scan

Situations where index clearly wins:

* Index-only queries which do not require retrieving actual tuples
- Example: $\pi_{A}\left(\sigma_{A>v}(R)\right)$
* Primary index clustered according to search key
- One lookup leads to all result tuples in their entirety

Index versus table scan (cont'd)

BUT(!):

* Consider $\sigma_{A>v}(R)$ and a secondary, non-clustered index on $R(A)$
- Need to follow pointers to get the actual result tuples
- Say that 20% of R satisfies $A>v$
- Could happen even for equality predicates
- I/O's for index-based selection: lookup $+20 \%|R|$
- I/O's for scan-based selection: $B(R)$
- Table scan wins if a block contains more than 5 tuples

Index nested-loop join

$* R \bowtie_{R . A=S . B} S$

* Idea: use the value of $R . A$ to probe the index on $S(B)$
\star For each block of R, and for each r in the block:
Use the index on $S(B)$ to retrieve s with $s . B=r . A$ Output $r s$
* I/O's: $B(R)+|R| \cdot($ index lookup)
- Typically, the cost of an index lookup is 2-4 I/O's
- Beats other join methods if $|R|$ is not too big
- Better pick R to be the smaller relation
* Memory requirement: 2

Zig-zag join using ordered indexes

$* R \bowtie_{R . A=S . B} S$

* Idea: use the ordering provided by the indexes on $R(A)$ and $S(B)$ to eliminate the sorting step of sort-merge join
* Trick: use the larger key to probe the other index
- Possibly skipping many keys that don't match

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Summary of tricks

* Scan
- Selection, duplicate-preserving projection, nested-loop join
\qquad
* Sort
- External merge sort, sort-merge join, union (set), difference, intersection, duplicate elimination, GROUP BY and aggregation
* Hash \qquad
- Hash join, union (set), difference, intersection, duplicate elimination, GROUP BY and aggregation
* Index
- Selection, index nested-loop join, zig-zag join

