Query Processing

CPS 116 Introduction to Database Systems

Announcements (November 9)

❖ Course project milestone #2 due today

Overview

- ❖ Many different ways of processing the same query
 - Scan? Sort? Hash? Use an index?
 - All have different performance characteristics and/or make different assumptions about data
- * Best choice depends on the situation
 - Implement all alternatives
 - Let the query optimizer choose at run-time

Notation

- * Relations: R, S
- \star Tuples: r, s
- * Number of tuples: |R|, |S|
- * Number of disk blocks: B(R), B(S)
- ❖ Number of memory blocks available: M
- ❖ Cost metric
 - Number of I/O's
 - Memory requirement

Table scan

- ❖ Scan table *R* and process the query
 - Selection over R
 - Projection of *R* without duplicate elimination
- **❖** I/O's: *B*(*R*)
 - Trick for selection: stop early if it is a lookup by key
- ❖ Memory requirement: 2 (+1 for double buffering)
- * Not counting the cost of writing the result out
 - Same for any algorithm!
 - Maybe not needed—results may be pipelined into another operator

Nested-loop join

- $R\bowtie_{b} S$
- For each block of R, and for each r in the block: For each block of S, and for each s in the block: Output rs if p evaluates to true over r and s
 - *R* is called the outer table; *S* is called the inner table
- \bullet I/O's: $B(R) + |R| \cdot B(S)$
- ❖ Memory requirement: 3 (+1 for double buffering)
- * Improvement: block-based nested-loop join
 - For each block of *R*, and for each block of *S*:
 - For each r in the R block, and for each s in the S block: ...
 - I/O's: $B(R) + B(R) \cdot B(S)$
 - Memory requirement: same as before

More improvements of nested-loop join

- Stop early if the key of the inner table is being matched
- ❖ Make use of available memory
 - Stuff memory with as much of R as possible, stream S by, and join every S tuple with all R tuples in memory
 - I/O's: $B(R) + \lceil B(R) / (M-2) \rceil \cdot B(S)$
 - Or, roughly: $B(R) \cdot B(S) / M$
 - Memory requirement: *M* (as much as possible)
- * Which table would you pick as the outer?

External merge sort

Remember (internal-memory) merge sort?

Problem: sort *R*, but *R* does not fit in memory

- ❖ Pass 0: read *M* blocks of *R* at a time, sort them, and write out a level-0 run
 - There are [B(R)/M] level-0 sorted runs
- ❖ Pass i: merge (M − 1) level-(i-1) runs at a time, and write out a level-i run
 - (M-1) memory blocks for input, 1 to buffer output
 - # of level-i runs = $\left[\text{# of level-}(i-1) \text{ runs } / (M-1) \right]$
- ❖ Final pass produces 1 sorted run

Example of external merge sort

- **❖** Input: 1, 7, 4, 5, 2, 8, 3, 6, 9
- ❖ Pass 0
 - $1, 7, 4 \rightarrow 1, 4, 7$
 - \blacksquare 5, 2, 8 → 2, 5, 8
 - $9, 6, 3 \rightarrow 3, 6, 9$
- ❖ Pass 1
 - $1, 4, 7 + 2, 5, 8 \rightarrow 1, 2, 4, 5, 7, 8$
 - **3**, 6, 9
- ❖ Pass 2 (final)
 - $\blacksquare 1, 2, 4, 5, 7, 8 + 3, 6, 9 \rightarrow 1, 2, 3, 4, 5, 6, 7, 8, 9$

Performance of external merge sort

- ❖ Number of passes: $\lceil \log_{M-1} \lceil B(R) / M \rceil \rceil + 1$
- **❖** I/O's
 - Multiply by 2 · B(R): each pass reads the entire relation once and writes it once
 - Subtract B(R) for the final pass
 - Roughly, this is $O(B(R) \cdot \log_M B(R))$
- * Memory requirement: M (as much as possible)

Some tricks for sorting

- Double buffering
 - Allocate an additional block for each run
 - Trade-off: smaller fan-in (more passes)
- ❖ Blocked I/O
 - Instead of reading/writing one disk block at time, read/write a bunch ("cluster")
 - More sequential I/O's
 - Trade-off: larger cluster → smaller fan-in (more passes)

Sort-merge join

- $R\bowtie_{R,A=S,B} S$
- Sort R and S by their join attributes, and then merge r, s = the first tuples in sorted R and S

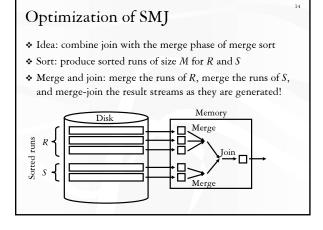
Repeat until one of R and S is exhausted:

If r.A > s.B then s = next tuple in S else if r.A < s.B then r = next tuple in R else output all matching tuples, and r, s = next in R and S

- ❖ I/O's: sorting + 2 B(R) + 2 B(S)
 - In most cases (e.g., join of key and foreign key)
 - Worst case is $B(R) \cdot B(S)$: everything joins

12

Example R: $\Rightarrow r_1.A = 1$ $\Rightarrow s_1.B = 1$ $\Rightarrow r_2.A = 3$ $r_3.A = 3$ $\Rightarrow s_3.B = 3$ $\Rightarrow r_4.A = 5$ $\Rightarrow r_5.A = 7$ $\Rightarrow r_7.A = 8$ $R \bowtie_{R.A = S.B} S:$ $r_1.S_1$ $r_2.S_3$ $r_2.S_3$ $r_2.S_4$ $r_3.S_3$ $r_3.S_3$ $r_3.S_4$ $r_3.S_4$ $r_3.S_5$ $r_3.S_5$ $r_3.S_5$



Performance of two-pass SMJ

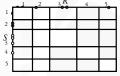
- All I/O's: $3 \cdot (B(R) + B(S))$
- * Memory requirement
 - To be able to merge in one pass, we should have enough memory to accommodate one block from each run: M > B(R) / M + B(S) / M
 - $M > \operatorname{sqrt}(B(R) + B(S))$

Other sort-based algorithms

- * Union (set), difference, intersection
 - More or less like SMJ
- ❖ Duplication elimination
 - External merge sort
 - Eliminate duplicates in sort and merge
- GROUP BY and aggregation
 - External merge sort
 - Produce partial aggregate values in each run
 - · Combine partial aggregate values during merge
 - Partial aggregate values don't always work though
 Examples: SUM(DISTINCT ...), MEDIAN(...)

Hash join

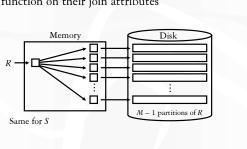
- $R\bowtie_{R.A=S} S$
- * Main idea
 - Partition R and S by hashing their join attributes, and then consider corresponding partitions of R and S
 - If r.A and s.B get hashed to different partitions, they don't join

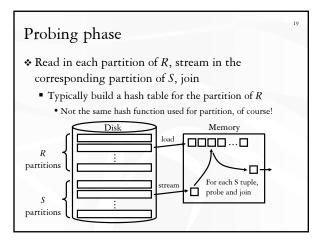


Nested-loop join considers all slots

Hash join considers only those along the diagonal

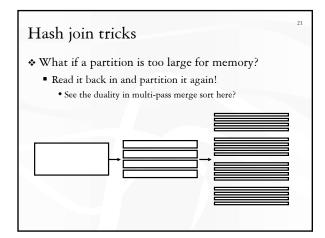
Partitioning phasePartition R and S according to the same hash function on their join attributes





Performance of hash join

- \star I/O's: $3 \cdot (B(R) + B(S))$
- ❖ Memory requirement:
 - In the probing phase, we should have enough memory to fit one partition of $R: M - 1 \ge B(R) / (M - 1)$
 - $M > \operatorname{sqrt}(B(R))$
 - We can always pick *R* to be the smaller relation, so: $M > \operatorname{sqrt}(\min(B(R), B(S)))$



Hash join versus SMJ

(Assuming two-pass)

- ❖ I/O's: same
- * Memory requirement: hash join is lower
 - $\operatorname{sqrt}(\min(B(R), B(S)) < \operatorname{sqrt}(B(R) + B(S))$
 - · Hash join wins when two relations have very different sizes
- Other factors
 - Hash join performance depends on the quality of the hash
 - · Might not get evenly sized buckets
 - SMJ can be adapted for inequality join predicates
 - SMJ wins if R and/or S are already sorted
 - · SMJ wins if the result needs to be in sorted order

What about nested-loop join?

- * May be best if many tuples join
 - Example: non-equality joins that are not very selective
- Necessary for black-box predicates
 - Example: ... WHERE user_defined pred(R.A, S.B)

Other hash-based algorithms

- Union (set), difference, intersection
 - More or less like hash join
- Duplicate elimination
 - Check for duplicates within each partition/bucket
- GROUP BY and aggregation
 - Apply the hash functions to GROUP BY attributes
 - Tuples in the same group must end up in the same partition/bucket
 - Keep a running aggregate value for each group

Duality of sort and hash

* Divide-and-conquer paradigm

• Sorting: physical division, logical combination

■ Hashing: logical division, physical combination

Handling very large inputs

■ Sorting: multi-level merge

■ Hashing: recursive partitioning

❖ I/O patterns

• Sorting: sequential write, random read (merge)

■ Hashing: random write, sequential read (partition)

Selection using index

***** Equality predicate: $\sigma_{A=v}(R)$

■ Use an ISAM, B⁺-tree, or hash index on *R*(*A*)

* Range predicate: $\sigma_{A>v}(R)$

• Use an ordered index (e.g., ISAM or B^+ -tree) on R(A)

■ Hash index is not applicable

 \star Indexes other than those on R(A) may be useful

■ Example: B^+ -tree index on R(A, B)

• How about B^+ -tree index on R(B, A)?

Index versus table scan

Situations where index clearly wins:

 Index-only queries which do not require retrieving actual tuples

• Example: $\pi_A (\sigma_{A>v}(R))$

* Primary index clustered according to search key

One lookup leads to all result tuples in their entirety

Index versus table scan (cont'd)

BUT(!):

❖ Consider $\sigma_{A>v}(R)$ and a secondary, non-clustered index on R(A)

Need to follow pointers to get the actual result tuples

■ Say that 20% of R satisfies A > v

• Could happen even for equality predicates

■ I/O's for index-based selection: lookup + 20% |R|

• I/O's for scan-based selection: B(R)

■ Table scan wins if a block contains more than 5 tuples

Index nested-loop join

 $R\bowtie_{R,A=S,B} S$

• Idea: use the value of R.A to probe the index on S(B)

* For each block of R, and for each r in the block: Use the index on S(B) to retrieve s with s.B = r.AOutput rs

❖ I/O's: B(R) + |R| · (index lookup)

■ Typically, the cost of an index lookup is 2-4 I/O's

• Beats other join methods if |R| is not too big

Better pick R to be the smaller relation

❖ Memory requirement: 2

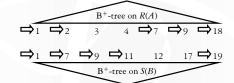
Zig-zag join using ordered indexes

 $R\bowtie_{R,A=S,B} S$

\div Idea: use the ordering provided by the indexes on R(A) and S(B) to eliminate the sorting step of sort-merge join

* Trick: use the larger key to probe the other index

Possibly skipping many keys that don't match



30

Summary of tricks

- Scan
 - Selection, duplicate-preserving projection, nested-loop join
- & Sor
 - External merge sort, sort-merge join, union (set), difference, intersection, duplicate elimination, GROUP BY and aggregation
- Hash
 - Hash join, union (set), difference, intersection, duplicate elimination, GROUP BY and aggregation
- ❖ Index
 - Selection, index nested-loop join, zig-zag join