Query Optimization

CPS 116
Introduction to Database Systems

Announcements (November 16)

\qquad

* Homework \#4 (last one and short) will be assigned next Tuesday
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Query optimization

\star One logical plan \rightarrow "best" physical plan

* Questions
- How to enumerate possible plans
- How to estimate costs
- How to pick the "best" one
\star Often the goal is not getting the optimum plan, but instead avoiding the horrible ones

Plan enumeration in relational algebra

* Apply relational algebra equivalences
ϖ Join reordering: \times and \bowtie are associative and commutative (except column ordering, but that is unimportant)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

More relational algebra equivalences

\qquad
$*$ Convert $\sigma_{p}-\times$ to/from $\bowtie_{p}: \sigma_{p}(R \times S)=R \bowtie_{p} S$
$*$ Merge/split σ 's: $\sigma_{p 1}\left(\sigma_{p 2} R\right)=\sigma_{p 1 \wedge p 2} R$
$*$ Merge/split π 's: $\pi_{L 1}\left(\pi_{L 2} R\right)=\pi_{L 1} R$, where $L 1 \subseteq L 2$

* Push down/pull up σ :
$\sigma_{p \wedge p r \wedge p s}\left(R \bowtie_{p} S\right)=\left(\sigma_{p r} R\right) \bowtie_{p \wedge p^{\prime}}\left(\sigma_{p s} S\right)$, where
- $p r$ is a predicate involving only R columns
- $p s$ is a predicate involving only S columns
- p and p^{\prime} are predicates involving both R and S columns
\because Push down $\pi: \pi_{L}\left(\sigma_{p} R\right)=\pi_{L}\left(\sigma_{p}\left(\pi_{L L^{\prime}} R\right)\right)$, where
- L^{\prime} is the set of columns referenced by p that are not in L
* Many more (seemingly trivial) equivalences...
- Can be systematically used to transform a plan to new ones

Relational query rewrite example

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Heuristics-based query optimization

* Start with a logical plan
$*$ Push selections/projections down as much as possible
- Why?
- Why not?
* Join smaller relations first, and avoid cross product
- Why?
- Why not?

Convert the transformed logical plan to a physical plan (by choosing appropriate physical operators)

SQL query rewrite

* More complicated—subqueries and views divide a query into nested "blocks"
- Processing each block separately forces particular join methods and join order
- Even if the plan is optimal for each block, it may not be optimal for the entire query
* Unnest query: convert subqueries/views to joins
σ We can just deal with select-project-join queries
- Where the clean rules of relational algebra apply

SQL query rewrite example

```
* SELECT name
    FROM Student
    WHERE SID = ANY (SELECT SID FROM Enroll);
* SELECT name
    FROM Student, Enroll
    WHERE Student.SID = Enroll.SID;
```


Dealing with correlated subqueries

```
* SELECT CID FROM Course
    WHERE title LIKE 'CPS%'
    AND min_enroll > (SELECT COUNT(*) FROM Enroll
                            WHERE Enroll.CID = Course.CID);
* SELECT CID
FROM Course, (SELECT CID, COUNT(*) AS cnt
                                    FROM Enroll GROUP BY CID) t
WHERE t.CID = Course.CID AND min_enroll > t.cnt
AND title LIKE 'CPS%';
```


"Magic" decorrelation

* SELECT CID FROM Course

WHERE title LIKE 'CPS\%'
AND min_enroll > (SELECT COUNT(*) FROM Enroll
WHERE Enrol1.CID = Course.CID)

* CREATE VIEW Supp_Course AS Process the outer query

SELECT * FROM Course WHERE title LIKE 'CPS\%'; without the subquery
CREATE VIEW Magic AS Collect bindings
SELECT DISTINCT CID FROM Supp Course;
SELECT DISTINCT CID FROM Supp_Course;
CREATE VIEW DS AS
Evaluate the subquery
(SELECT Enrol1.CID, COUNT (*) AS cnt with bindings
FROM Magic, Enroll WHERE Magic.CID = Enroll.CID
GROUP BY Enroll.CID) UNION
(SELECT Magic.CID, 0 AS cnt FROM Magic
WHERE Magic.CID NOT IN (SELECT CID FROM Enroll);
SELECT Supp_Course.CID FROM Supp_Course, DS Finally, refine WHERE Supp_Course.CID = DS.CID \quad the outer query AND min_enroll > DS.cnt;

Heuristics- vs. cost-based optimization

* Heuristics-based optimization
- Apply heuristics to rewrite plans into cheaper ones
* Cost-based optimization
- Rewrite logical plan to combine "blocks" as much as possible
- Optimize query block by block
- Enumerate logical plans (already covered)
- Estimate the cost of plans
- Pick a plan with acceptable cost
- Focus: select-project-join blocks

Cost estimation

* We have: cost estimation for each operator
- Example: SORT(CID) takes $2 \times B$ (input)
- But what is $B($ input $)$?
* We need: size of intermediate results

Selections with equality predicates

* $Q: \sigma_{A={ }_{v}} R$
$*$ Suppose the following information is available
- Size of $R:|R|$
- Number of distinct A values in $R:\left|\pi_{A} R\right|$
* Assumptions
- Values of A are uniformly distributed in R
- Values of v in Q are uniformly distributed over all R.A values
$\because|Q| \approx|R| /\left|\pi_{A} R\right|$
- Selectivity factor of $(A=v)$ is $1 /\left|\pi_{A} R\right|$

Conjunctive predicates

* Q: $\sigma_{A=u \text { and } B={ }_{v} R}$
* Additional assumptions
- $(A=u)$ and $(B=v)$ are independent
- Counterexample: major and advisor
- No "over"-selection
- Counterexample: A is the key
$\star|Q| \approx|R| /\left(\left|\pi_{A} R\right| \cdot\left|\pi_{B} R\right|\right)$
- Reduce total size by all selectivity factors
\qquad

Negated and disjunctive predicates

* $Q: \sigma_{A \neq v} R$
- $|Q| \approx|R| \cdot\left(1-1 /\left|\pi_{A} R\right|\right)$
- Selectivity factor of $\neg p$ is ($1-$ selectivity factor of p)
* Q: $\sigma_{A=u \text { or } B={ }_{v} R}$
- $|Q| \approx|R| \cdot\left(1 /\left|\pi_{A} R\right|+1 /\left|\pi_{B} R\right|\right)$?
-

\qquad
\qquad

Range predicates

\qquad

* $Q: \sigma_{A>{ }_{v}} R$
\star Not enough information!
- Just pick, say, $|Q| \approx|R| \cdot 1 / 3$
* With more information
- Largest R.A value: $\operatorname{high}(R . A)$
- Smallest $R . A$ value: $\operatorname{low}(R . A)$
- $|Q| \approx|R| \cdot(\operatorname{high}(R . A)-v) /(\operatorname{high}(R . A)-\operatorname{low}(R . A))$
- In practice: sometimes the second highest and lowest are used instead
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Two-way equi-join

* $Q: R(A, B) \bowtie S(A, C)$
* Assumption: containment of value sets
- Every tuple in the "smaller" relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
- That is, if $\left|\pi_{A} R\right| \leq\left|\pi_{A} S\right|$ then $\pi_{A} R \subseteq \pi_{A} S$ \qquad
- Certainly not true in general
- But holds in the common case of foreign key joins \qquad
$*|Q| \approx$
- Selectivity factor of R.A $=S . A$ is \qquad
\qquad

Multiway equi-join

* Q: $R(A, B) \bowtie S(B, C) \bowtie T(C, D)$
* What is the number of distinct C values in the join of R and S ?
* Assumption: preservation of value sets
- A non-join attribute does not lose values from its set of possible values
- That is, if A is in R but not S, then $\pi_{A}(R \bowtie S)=\pi_{A} R$
- Certainly not true in general
- But holds in the common case of foreign key joins (for value sets from the referencing table)

Multiway equi-join (cont'd)

* $Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D)$
* Start with the product of relation sizes
- $|R| \cdot|S| \cdot|T|$
* Reduce the total size by the selectivity factor of each join predicate
- R.B $=$ S.B: $1 / \max \left(\left|\pi_{B} R\right|,\left|\pi_{B} S\right|\right)$
- S.C $=$ T.C: $1 / \max \left(\left|\pi_{C} S\right|,\left|\pi_{C} T\right|\right)$
- $|Q| \approx(|R| \cdot|S| \cdot|T|) /$ $\left(\max \left(\left|\pi_{B} R\right|,\left|\pi_{B} S\right|\right) \cdot \max \left(\left|\pi_{C} S\right|,\left|\pi_{C} T\right|\right)\right)$
\qquad

Cost estimation: summary

* Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
$*$ Lots of assumptions and very rough estimation
- Accurate estimate is not needed
- Maybe okay if we overestimate or underestimate consistently
- May lead to very nasty optimizer "hints" SELECT * FROM Student WHERE GPA > 3.9; SELECT * FROM Student WHERE GPA > 3.9 AND GPA > 3.9;
* Not covered: better estimation using histograms
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Search for the best plan

* Huge search space
* "Bushy" plan example:

* Just considering different join orders, there are $(2 n-2)!/(n-1)$ bushy plans for $R_{1} \bowtie \cdots \bowtie R_{n}$ - 30240 for $n=6$
\star And there are more if we consider:
- Multiway joins
- Different join methods
- Placement of selection and projection operators

Left-deep plans

* Heuristic: consider only "left-deep" plans, in which only the left child can be a join
-
* How many left-deep plans are there for $R_{1} \bowtie \cdots \bowtie R_{n}$?

A greedy algorithm

S_{1}, \ldots, S_{n}

- Say selections have been pushed down; i.e., $S_{i}=\sigma_{p} R_{i}$
$*$ Start with the pair S_{i}, S_{j} with the smallest estimated size for $S_{i} \bowtie S_{j}$
\star Repeat until no relation is left:
Pick S_{k} from the remaining relations such that the join of S_{k} and the current result yields an intermediate result of the smallest size

A dynamic programming approach

* Generate optimal plans bottom-up
- Pass 1: Find the best single-table plans (for each table)
- Pass 2: Find the best two-table plans (for each pair of tables) by combining best single-table plans
- ...
- Pass k : Find the best k-table plans (for each combination of k tables) by combining two smaller best plans found in previous passes
-
* Rationale: Any subplan of an optimal plan must also be optimal (otherwise, just replace the subplan to get a better overall plan)
Well, not quite...

The need for "interesting order"

* Example: $R(A, B) \bowtie S(A, C) \bowtie T(A, D)$
* Best plan for $R \bowtie S$: hash join (beats sort-merge join)
* Best overall plan: sort-merge join R and S, and then sortmerge join with T
- Subplan of the optimal plan is not optimal!
* Why?
- The result of the sort-merge join of R and S is sorted on A
- This is an interesting order that can be exploited by later processing (e.g., join, duplicate elimination, GROUP BY, ORDER BY, etc.)!

Dealing with interesting orders

* When picking the best plan
- Comparing their costs is not enough
- Plans are not totally ordered by cost anymore
- Comparing interesting orders is also needed
- Plans are now partially ordered
- Plan X is better than plan Y if
- Cost of X is lower than Y
- Interesting orders produced by X subsume those produced by Y
* Need to keep a set of optimal plans for joining every combination of k tables
- At most one for each interesting order

Summary

* Relational algebra equivalence
* SQL rewrite tricks
* Heuristics-based optimization
\star Cost-based optimization
- Need statistics to estimate sizes of intermediate results
- Greedy approach
- Dynamic programming approach

