
1

Scalable Continuous Query Processing
and Result Dissemination

Jun Yang
Duke University

Joint work with
Pankaj Agarwal, Badrish Chandramouli, Junyi Xie, Hai Yu

DUKESystems & Architecture

2
Announcements (Dec. 5)

Homework #4 due today

No class on Thursday

Project demos start next week; schedule through email

Final exam on Dec. 15 (9am – 12pm)
– Open book, open notes

– Final review session on Dec. 14 (3pm – 5pm)

– Similar format as sample final
• Solution available today

Course evaluation forms

Missing handouts and graded assignments: check
handout box or email me

3

WAN

A shift in query paradigm

One-time query over
a static snapshot of database

Continuous query over
an input update stream

Applications
– Environmental monitoring (NSF NEON)

– Network management (Ganglia)

– Personal publish/subscribe (Google Alert)

Scalability challenges
– Too much data

– Too many continuous queries

– Results needed all over the network

DBResult

DBResult
Updates

Result updates
Updates

Result updates

Query ?

CQ ?

Updates
Updates
Updates
Updates
UpdatesUpdatesUpdates

Updates
Updates

?

?
?

?
?

?

2

4
Challenge: too many queries!

For each incoming update…

Naïve: For each CQ, compute & send result update
– Linear in # of CQs; not scalable

Group processing: share work across queries!

Query-data inversion: treat CQs as data, incoming
update as query

If all CQs are filters (e.g., 60<PRICE<80),
use an index on filters (e.g., interval tree)

for finding affected queries
in sub-linear time ? ? ? ? ? ? ?

Index of
filter CQs

…

Data update

? ? ?

CQs affected by update

5
But how about (select-)joins?

Database relations: R(A, B), S(B, C)

Qi: (SELECTrangeAi R) JOIN (SELECTrangeCi S)

JOIN matches R, S tuples with equal B value

SELECTrangeAi/SELECTrangeCi select only those passing
local (range) selection conditions

Example: matching Supply & Demand
– Supply.product = Demand.product AND

Supply.rating ∈ [7, 10] AND
Demand.quantity > 1000

=
∈ rangeAi ∈ rangeCi

6
Method 1: select first

Q1: (SELECTrangeA1 R) JOIN (SELECTrangeC1 S),
Q2: (SELECTrangeA2 R) JOIN (SELECTrangeC2 S),
Q3: (SELECTrangeA3 R) JOIN (SELECTrangeC3 S),
Q4: (SELECTrangeA4 R) JOIN (SELECTrangeC4 S),
… …

Given data update new r(a,b) ∈ R
Find subset of CQs whose selection condition on R
is satisfied by r
– Use an index on all rangeAi’s

Process each such Qi

– Use an index on S (e.g., B-tree w/ compound key BC)
to identify S tuples with S.B = b and S.C ∈ rangeCi

But what if lots of Qi’s survive the first step?

3

7

A geometric interpretation
R.A

S.C

Method 2: join first

Given data update new r(a,b) ∈ R

Find all S tuples that join with r
– Use an index on S

Process each such tuple s
– Use an index on all CQs

(e.g., R-tree on {rangeAi×rangeCi})

to identify Qi’s for which
a ∈ rangeAi and s.C ∈ rangeCi

But what if lots of S tuples
join with r?

Space of
(R JOIN S) tuples

rangeCi

rangeAi

Qi

a

8
Problem of intermediate result size

Each method forces a particular processing order
– Method 1: select first

• Cost depends on n’ (# of rangeAi’s containing a)

– Method 2: join first
• Cost depends on m’ (# of S tuples that join with r)

– Both n’ and m’ can be huge even if final output size is
small ≈ “OpenBSD birthday pony”

Can we make processing cost independent of n’ & m’?

9
Idea: exploit input characteristics

CQs (=user interests) often are naturally clustered
– Take advantage of clusteredness in processing

Stabbing Set Index

– Partition intervals into disjoint stabbing groups, where
in each group all intervals are stabbed by a same point

– Stabbing number τ = # of stabbing groups

– Fast construction and maintenance
• Can be constructed optimally (with smallest τ possible) in O(n log n) time

• Can be maintained within 1+ε of the optimal in O((1+1/ε) log n) time

n ranges of interests

4

10

R.A

S.C

Algorithm based on stabbing groups

Use a stabbing set index on all rangeCi’s

For each stabbing group (with common point p)
– Find the two points on the

a line (i.e., two S tuples
joining with r) closest to p

• Use an index on S (e.g., B-tree
w/ compound key BC)

– Find all rectangles in the
stabbing group stabbed by
one of the two points

• Use an index (e.g., R-tree)

on this stabbing group of CQs

Space of
(R JOIN S) tuples

a

p

11
Cost analysis

O(τ × (three index lookups) + output)
– Cost depends on τ, not on m’ or n’

Input-sensitive
More clusteredness in CQs

→ Smaller τ
→ Lower cost

Compare with:
– Method 1: O(n’ × (index lookup) + output)

– Method 2: O(m’ × (index lookup) + output)

12
Experiments

100K CQs; 100K-row relations

Th
ro

ug
hp

ut
 (#

 o
f u

pd
at

es
/s

ec
)

Avg. # of rangeAi’s containing a (n’)

Stabbing groups

Select first

5

13
Experiments

100K CQs; 100K-row relations

Th
ro

ug
hp

ut
 (#

 o
f u

pd
at

es
/s

ec
)

Avg. # of joining S tuples (m’)

Stabbing groups

Join first

14
Experiments

100K CQs; 100K-row relations

Th
ro

ug
hp

ut
 (#

 o
f u

pd
at

es
/s

ec
)

of stabbing groups (τ)

Stabbing groups

15
More input-sensitivity

Input-sensitive dynamic optimization
– For each incoming update,

look at τ, m’, and n’ to decide how to process it

– Maintain the stabbing set index,
but only process large groups in the new way

Input-sensitive scalable processing of band joins
– Join condition: R.B – S.B ∈ rangeBi

– First attempt at scalably group-processing joins with
different join conditions

6

16

Just covered: challenge of too many queries
– [Agarwal, Xie, Yu, Yang; VLDB 2006]

Next: delivering results all over the network
– [Chandramouli, Xie, Yang; SIGMOD 2006]

17
Dissemination bottleneck

Traditional DB-centric approach
– Focused on subscription processing

– Ignored notification dissemination

Implicit assumption: output a list of notifications,
one for each affected subscription
– h Qi1, msg i, h Qi2, msg i, h Qi3, msg i, …

– Potentially a very long list

– Sending them to subscribers one at a time (unicast) can
overwhelm the server and its outgoing network links

18
Network-centric approach

Unicast/broadcast

Multicast = channel-based subscriptions

Content-based networking (CN):
supports message-based filter
subscriptions directly in network
– Message:
h attr1:val1, attr2:val2, attr3:val3, …i

– Subscription:
“attr1 = ‘foo’ and attr2 ∈ range and …”

Gets close to SQL-style declarative CQs, but still
doesn’t support stateful CQs

CN

?

? ?
?
?

subscriptions

message

7

19
Stateful subscription example

Range-min subscription
– Q: select MIN(PER) from STOCK

where RISK between 20 and 40

Update message hSYM:foo, RISK:35, PER:25 → 20i

Stateful: cannot determine its effect on Q just by
looking at the message itself
– Is there another stock in RISK range with PER < 20?

20
Supporting stateful subscriptions

Just stick the DB-centric approach and a network
together?
– “List of affected subscriptions” leads to unicast
– Multicast: map the list to group(s) first, then send

Too many possible subsets! What groups to form?

Push state support into network of smart brokers?
– Complicates system design and deployment

Content-based network?
– Naïve method: “relax” subscription into a stateless one

• select MIN(PER) from STOCK where RISK between 20 and 40
select PER from STOCK where RISK between 20 and 40

Too many unnecessary notifications!

21
Message/subscription reformulation

DB reformulates messages to add state info

Reformulate subscriptions into stateless ones over
new message format

Naïve: put entire database state into message!

Optimization problem: what’s the minimal
amount of info to embed?

CNoriginal
message

?

original
subscriptions

(stateful)

?
?

CN

?

reformulated
subscriptions

(stateless)

?
?

DB
reformulated

message
(aug. w/ state info)

8

22
Range-min revisited

Qi: MIN(PER), where RISK between xi and yi

Update hSYM:foo, RISK:35, PER:25 → 20i

What info should DB send out to help decide whether a
subscription is affected by an update?
– Maximum Affected Range (MAR): extends left & right until a

lower PER is encountered

– Affected ⇔ RISK of update ∈ [xi, yi] ⊆ MAR of update

– Can be computed in O(log |STOCK|)—does not depend on how
many subscriptions are actually affected!

PER

RISKxi yi

MAR()

23
Reformulation for range-min

Message reformulation (at runtime):
hSYM:foo, RISK:35, PER:25 → 20i

Say MAR is (17, 52)

hNewMinPER:20, RISK:35, MARLeftRISK:17, MARRightRISK:52i

Subscription reformulation (at registration time)
Qi: MIN(PER), where RISK between xi and yi

Qi’: NewMinPER, where
MARLeftRisk <xi · RISK and RISK · yi < MARRightRisk

Changing role of DB
– From producing the set of affected subscriptions

– To producing a semantic description of the set

24
Experiment

Content-based network (CN) substrate:
Meghdoot (UCSB; based on CAN)

Yahoo!
stock
updates +
synthetic
sub-
scriptions

Orders of magnitude
difference

Reformulation + CN

9

25
Bigger picture

Spectrum of DB/network interfaces to explore

Message/subscription reformulation is a general
technique for handling stateful subscriptions over
a stateless dissemination interface
– Clean, modular system design

Input-sensitive dynamic optimization
– Choose best dissemination method at runtime

Think of dissemination networks as database indexes!

Input-sensitive dissemination network design
Analogous to workload-aware index design

26
Conclusion & take-away points

Static queries → continuous queries

Scalability challenges
– Lots of data: [Xie, Yang, Chen; SIGMOD 2005]

– Lots of queries: [Agarwal, Xie, Yu, Yang; VLDB 2006]

– Distributed subscribers: [Chandramouli, Xie, Yang; SIGMOD 2006]

Exploit data/query characteristics with dynamic
input-driven processing

Rethink database/network interface

Jointly optimize data processing/dissemination

27
Related work

High data rates
– Focus of most work on stream processing: Aurora/Borealis

(Brandeis/Brown/MIT), STREAM (Stanford), TelegraphCQ
(Berkeley), etc.

Lots of queries
– Multi-query optimization
– Lots of work on predicate indexing
– Beyond predicates: TriggerMan (Florida), NiagraCQ (Wisconsin),

CACQ/PSoup (Berkeley)

Widely distributed subscribers
– IP- and application-level multicasts
– Content-based networking (IBM Gryphon, Colorado)
– YFilter/ONYX (Berkeley), SemCast (Brown)
– DEBS Workshop

10

28

Thanks!

Duke Database Research Group

http://www.cs.duke.edu/dbgroup/

