
1

First Order Logic
(Predicate Calculus)

CPS 270

Ronald Parr

First Order Logic

• Propositional logic is very restrictive
– Can’t make global statements about

objects in the world

– Tends to have very large KBs

• First order logic is more expressive
– Relations, quantification, functions

– More expensive

First Order Syntax

• Sentences

• Atomic sentence predicate(term)
• Terms – functions, constants, variables

• Connectives

• Quantifiers

• Constants

• Variables

Relations

• Assert relationships between objects

• Examples
– Loves(Harry, Sally)

– Between(Canada, US, Mexico)

• Semantics
– Object and predicate names are mnemonic only
– Interpretation is imposed from outside

Functions

• Functions are specials cases of relations

• Suppose R(x1,x2,…,xn,y) is such that for
every value of x1,x2,…,xn there is a unique y

• Then R(x1,x2,…,xn) can be used as a
shorthand for y
– Crossed(Right_leg_of(Ron), Left_leg_of(Ron))

• Remember that the object identified by a
function depends upon the interpretation

Quantification

• For all objects in the world…

• For at least one object in the world…

)(happy xx∀

)(happy xx∃

2

Examples

• Everybody loves somebody

• Everybody loves everybody

• Everybody loves Raymond

• Raymond loves everybody

What’s Missing?

• There are many extensions to first order logic
• Higher order logics permit quantification over

predicates:

• Functional expressions (lambda calculus)

• Uniqueness

• Extensions typically replace a potentially long
series of conjuncts with a single expression

)))()((()(, ypxppyxyx ⇔∀⇔=∀

Inference

• All rules of inference for propositional logic
apply to first order logic

• We need extra rules to handle substitution for
quantified variables

),()),(} ,/,/({SUBST SallyHarryLovesyxLovesSallyyHarryx =

Inference Rules

• Universal Elimination

• How to read this:
– We have a universally quantified variable v in α
– Can substitute any g for v and α will still be true

)} ,/({ α
α

gvSUBST

v∀

�����������	��
���
���� ���

• Existential Elimination

• How to read this:
– We have a universally quantified variable v in a

– Can substitute any k for v and α will still be true

– IMPORTANT: k must be a previously unused
constant (skolem constant). Why is this OK?

)} ,/({SUBST α
α

kv

v∃

������� ����� "!$#��%��&(')� #+*��,&.-./"!�&"#+� 01� ��243

5�687:9<; =<>�? @A? BDCFE�GH? B�IJBK? LA=�M,NAO<;:P<IDO<BDQH? RH? =<M�? NSQTMT? UA7:V
5XW�LA=<MYVAZD9J[JV\; 9DLA=AN�NA9�>F=<ZD9J[KV

5^]_? QT`�6a7:9<; =<>bUc9dBeNcQYOdBeQ,NgfcZD=KUc9<>	=DN�h

5^]_`DV\? NSQH`J? NSESMY9<BDCdi
5Xj8=J=J[FQk9�IcNA=^NK7c9<; =<>lRHI<BDU:QT? 9<BeN�h

),(: yxlovesyx∃∀

)34752,(: objectxlovesx∀

))(,(: xdbypersonlovexlovesx∀

3

Inference Rules

• Existential Introduction

• How to read this:
– We know that the sentence α is true

– Can substitute variable v for any constant g in α
and (w/existential quantifier) and α will still be true

– Why is this OK?

)} ,/({SUBST α
α

vvg ∃

Inference Rules

• Generalized Modus Ponens

• Define a substitution such that:

• Then

})/({SUBST

)(,',',' 2121

q

qpppppp nn

θ

�∧∧∧ ��

ipp ii ∀=),(SUBST)',(SUBST θθ

Generalized Modus Ponens

• How to read this:
– We have an implication which implies q
– Any consistent substitution of variables on

the LHS must yield a valid conclusion on
the RHS

})/({SUBST

)(,',',' 2121

q

qpppppp nn

θ

�∧∧∧ ��

ipp ii ∀=),(SUBST)',(SUBST θθ

Unification

• Substitution is a non-trivial matter

• We need an algorithm unify:

• Important: Unification replaces variables:

),(Subst),(Subst:),(Unify qpqp θθθ ==

),(Hates),,(Loves xJohnxxJohnx ∃∃

Unification Example

),(

))(,(

),(

),(

),(),(

ElizabethxxKnows

yMotheryyKnows

LeonidyyKnows

JaneJohnKnows

xJohnLovesxJohnxKnows

∀
∀
∀

�∀

=
=

=
=

)),(),,((Unify

)))(,(),,((Unify

)),(),,((Unify

)),(),,((Unify

ElizabethxKnowsxJohnKnows

yMotheryKnowsxJohnKnows

LeonidyKnowsxJohnKnows

JaneJohnKnowsxJohnKnows

Note: All unquantified variables are assumed universal from here on.

Most General Unifier

• Unify(Knows(John,x),Knows(y,z))
– {y/John,x/z}
– {y/John,x/z,w/Freda}

– {y/John,x/John,z/John)

• When in doubt, we should always return
the most general unifier (MGU)
– MGU makes least commitment about

binding variables to constants

4

Proof Procedures

• Suppose we have a knowledge base: KB
• We want to prove q

• Forward Chaining
– Like search: Keep proving new things and adding

them to the KB until we are able to prove q

• Backward Chaining
– Find p1…pn s.t. knowing p1…pn would prove q

– Recursively try to prove p1…pn

Forward Chaining Example

),(

))(,(

),(

),(

),(),(

ElizabethxxKnows

yMotheryyKnows

LeonidyyKnows

JaneJohnKnows

xJohnLovesxJohnxKnows

∀
∀
∀

�∀

Forward Chaining
Procedure Forward_Chain(KB,p)
If p is in KB then return
Add p to KB
For each (p1 ^ … ^ pn=>q) in KB such that for
some i,
Unify(pi,p)=θ succeeds do

Find_And_Infer(KB,[p1,…,pi-1,pi+1,…,pn],q,θ)
end

Procedure Find_and_Infer(KB,premises,conclusion,θ)
If premises=[] then

Forward_Chain(KB,Subst(θ,conclusion))
Else for each p’ in KB such that
Unify(p’,Subst(θ,Head(premises)))=θ2 do

Find_And_Infer(KB,Tail(premises),conclusion,[θ,θ2]))
end

Backward Chaining Example

),(

))(,(

),(

),(

),(),(

ElizabethxxKnows

yMotheryyKnows

LeonidyyKnows

JaneJohnKnows

xJohnLovesxJohnxKnows

∀
∀
∀

�∀

Backward Chaining

Function Back_Chain(KB,q)
Back_Chain_List(KB,[q],{})

Function Back_Chain_List(KB,qlist,θ)
If qlist=[] then return θ
q<-head(qlist)
For each qi’ in KB such that θi<-Unify(q,qi’) succeeds do

Answers <- Answers + [θ,θi]
For each (pi^…^pn=>qi’)in KB: θi<-Unify(q,qi’) succeeds do

Answers<- Answers+
Back_Chain_List(KB,Subst(qi,[pi…pn]),[θ,θi]))

return union of Back_Chain_List(KB,Tail(qlist),θ) for each θ in answers

Completeness

• Problem: Generalized Modus Ponens not complete

• Goal: A sound and complete inference procedure for
first order logic

???)(

)()(

)()(

)()(

)()(

AS

xSxxR

xSxxQ

xRXPx

xQXxP

�∀

�∀

�¬∀

�∀

5

Generalized Resolution

• How to read this:
– Substitution:

– If the same term appears in both positive
and negative form in two disjunctions, they
cancel out when disjunctions are combined

))(,(SUBST

)(),(

111111

11

nkkmjj

nkmj

qqqqpppp

qqqppp

∨∨∨∨∨∨∨
∨∨∨∨

+−+− ����

����

θ

θ=¬),(Unify kj qp

Resolution Properties

• Proof by refutation (asserting negation and
resolving to nil) is sound and complete

• Resolution is not complete in a generative
sense, only in a testing sense

• This is only part of the job

• To use resolution, we must convert
everything to a canonical form

Canonical Form

• Eliminate Implications
• Move negation inwards
• Standardize (apart) variables
• Move quantifiers Left
• Skolemize
• Drop universal quantifiers
• Distribute AND over OR
• Flatten nested conjunctions and disjunctions
• Convert disjunctions to implications (optional)

Resolution Example

???)(

))()((

))()((

))()((

))()((

AS

xSxR

xSxQ

xRxP

xQxP

∨¬
∨¬

∨
∨¬

Example on board…

Computational Properties

• Can we enumerate the set of all proofs?

• Can we check if a proof is valid?
• What if no valid proof exists?

• Inference in first order logic is semi-
decidable

• Compare with halting problem

Gödel

• How do these soundness and
completeness results relate to Gödel’s
incompleteness theorem?

• Incompleteness applies to mathematical
systems

• You need numbers because you need a
way of referring to proofs by number

