First Order Logic
(Predicate Calculus)

CPS 270
Ronald Parr

First Order Logic

« Propositional logic is very restrictive

— Can't make global statements about
objects in the world

— Tends to have very large KBs

* First order logic is more expressive
— Relations, quantification, functions
— More expensive

First Order Syntax

Sentences

Atomic sentence predicate(term)
Terms — functions, constants, variables
Connectives

Quantifiers

Constants

Variables

Relations

 Assert relationships between objects
» Examples
— Loves(Harry, Sally)
— Between(Canada, US, Mexico)
* Semantics
— Object and predicate names are mnemonic only
— Interpretation is imposed from outside

Functions

Functions are specials cases of relations
Suppose R(X3,X,,...,X,,Y) is such that for
every value of x;,X,,...,X, there is a unique y
Then R(Xy,%,,...,X,) can be used as a
shorthand for y

— Crossed(Right_leg_of(Ron), Left_leg_of(Ron))
Remember that the object identified by a
function depends upon the interpretation

Quantification
« For all objects in the world...

Cixhappy ()

 For at least one object in the world...

[xhappy(x)




Examples

» Everybody loves somebody
» Everybody loves everybody

» Everybody loves Raymond

Raymond loves everybody

What's Missing?

» There are many extensions to first order logic

Higher order logics permit quantification over
predicates:

Ox, y(x=1y) = (Op(p(x) = p(Yy)))
Functional expressions (lambda calculus)
« Uniqueness

« Extensions typically replace a potentially long
series of conjuncts with a single expression

Inference

« All rules of inference for propositional logic
apply to first order logic

* We need extra rules to handle substitution for
guantified variables

SUBST ({x/ Harry, y/ Sally}, Loves(X, y)) = Loves(Harry, Sally)

Inference Rules

» Universal Elimination

Ova
UBST({v/g},a)
* How to read this:

— We have a universally quantified variable v in a
— Can substitute any g for v and a will still be true

Inference Rules
» Existential Elimination

Lva
SUBST ({v/k},a)

* How to read this:
— We have a universally quantified variable v in a
— Can substitute any k for v and a will still be true

— IMPORTANT: k must be a previously unused
constant (skolem constant). Why is this OK?

Skolemization within Quantifiers

Skolemizing w/in universal quantifier is tricky
Everybody loves somebody

OxCy : loves(x, y)
« With Skolem constants, becomes:
Ox : loves(x, object34752)
¢ Why is this wrong?
* Need to use skolem functions:
Ox : loves(x, per sonlovedby(x))




Inference Rules

Existential Introduction

a
SUBST ({g/v},[va)

¢ How toread this:
— We know that the sentence a is true

— Can substitute variable v for any constant g in o
and (w/existential quantifier) and o will still be true
— Why is this OK?

Inference Rules

* Generalized Modus Ponens

» Define a substitution such that:
SUBST (8, p.') =SUBST (8, p,)0i

* Then

P B (R ER, C...Cp,=0)
SUBST({8/q})

Generalized Modus Ponens

SUBST(6, p,') = SUBST(4, p,)0li

PP Py (R EP, C...C p, = Q)
SUBST({8/q})

» How to read this:

—We have an implication which implies q

— Any consistent substitution of variables on

the LHS must yield a valid conclusion on
the RHS

Unification

 Substitution is a non-trivial matter
* We need an algorithm unify:
Unify (p,q) = 6: Subst(6, p) = Subst(6,q)

 Important: Unification replaces variables:

[CxLoves(John, x), CxHates(John, x)

Unification Example

OxKnows(John, x) = Loves(John, x)
Knows(John, Jane)

OyKnows(y, Leonid)

OyKnows(y, Mother (y))
OxKnows(x, Elizabeth)

Note: All unquantified variables are assumed universal from here on.

Unify (Knows (John, x), Knows(John, Jane)) =
Unify (Knows(John, x), Knows(y, Leonid)) =
Unify (Knows(John, x), Knows(y, Mother(y))) =
Unify (Knows(John, x), Knows(x, Elizabeth)) =

Most General Unifier

* Unify(Knows(John,x),Knows(y,z))
—{y/John,x/z}
—{y/John,x/z,w/Freda}
—{y/John,x/John,z/John)

* When in doubt, we should always return
the most general unifier (MGU)

— MGU makes least commitment about
binding variables to constants




Proof Procedures

» Suppose we have a knowledge base: KB
* We want to prove q

» Forward Chaining

— Like search: Keep proving new things and adding
them to the KB until we are able to prove q

Backward Chaining

— Find p;...p, s.t. knowing p;...p,, would prove g

— Recursively try to prove p;...p,

Forward Chaining Example

OxKnows(John, x) = Loves(John, x)
Knows(John, Jane)

OyKnows(y, Leonid)

OyKnows(y, Mother (y))
OxKnows(x, Elizabeth)

Forward Chaining

Procedure Forward_Chain(KB,p)

If pis in KB then return

Add p to KB

For each (p; * ... * p,=>q) in KB such that for

some i,

Unify(p;,p)=6 succeeds do
Find_And_lInfer(KB,[p,,...,P.1:Pis1s-+-Pnl:d.0)

end

Procedure Find_and_Infer(KB,premises,conclusion,8)

If premises=[] then
Forward_Chain(KB,Subst(8,conclusion))

Else for each p’ in KB such that

Unify(p’,Subst(6,Head(premises)))=6, do
Find_And_lInfer(KB,Tail(premises),conclusion,[6,8,]))

end

Backward Chaining Example

OxKnows(John, x) => Loves(John, x)
Knows(John, Jane)

OyKnows(y, Leonid)

OyKnows(y, Mother (y))
OxKnows(x, Elizabeth)

Backward Chaining

Function Back_Chain(KB,q)
Back_Chain_List(KB,[q].{})

Function Back_Chain_List(KB,glist,8)
If glist=[] then return &
g<-head(qglist)
For each g;’ in KB such that 6<-Unify(q,q;") succeeds do
Answers <- Answers + [6,6]
For each (p*..."p,=>q;)in KB: 6,<-Unify(q,q;") succeeds do
Answers<- Answers+
Back_Chain_List(KB,Subst(q;[p;...p.]).[6,6]))
return union of Back_Chain_List(KB,Tail(glist),6) for each 8 in answers

Completeness

OxP(X) = Q(x)
Ox=P(X) = R(X)
OxQ(x) = S(x)
OXR(x) = S(x)
S(A) ?7?7?

* Problem: Generalized Modus Ponens not complete

» Goal: A sound and complete inference procedure for
first order logic




Generalized Resolution

(pO...p;..-0py)(q, O...q ...0q,)

SUBST (@, (p, C-.. p;, O P}y --- 0P, 00, O-.. Gy OGyy---00,))

» How to read this:
— Substitution: Unify(p;,~q,) =6
— If the same term appears in both positive
and negative form in two disjunctions, they
cancel out when disjunctions are combined

Resolution Properties

Proof by refutation (asserting negation and
resolving to nil) is sound and complete

Resolution is not complete in a generative
sense, only in a testing sense

This is only part of the job

To use resolution, we must convert
everything to a canonical form

Canonical Form

» Eliminate Implications

» Move negation inwards

» Standardize (apart) variables
* Move quantifiers Left

» Skolemize

» Drop universal quantifiers

« Distribute AND over OR

* Flatten nested conjunctions and disjunctions
» Convert disjunctions to implications (optional)

Resolution Example

(=P(¥) CQ(x))
(P(X) OR(X))
(= Q(x) IS(x))
(=R(x) OS(x))
S(A) 77?2

Example on board...

Computational Properties

Can we enumerate the set of all proofs?

Can we check if a proof is valid?
What if no valid proof exists?

Inference in first order logic is semi-
decidable

Compare with halting problem

Godel

How do these soundness and
completeness results relate to Godel's
incompleteness theorem?

Incompleteness applies to mathematical
systems

You need numbers because you need a
way of referring to proofs by number




