Exercises

The credit assignment reflects a subjective assessment of difficulty. A typical question can be answered using knowledge of the material combined with some thought and analysis.

1. Classifying a 2-manifold (one credit). Characterize the surface depicted in Figure II. 11 in terms of genus and orientability.

Figure II.11: A 2-manifold without boundary embedded in \mathbb{R}^{3}.
2. Klein bottle (two credits). Cut and paste the standard polygonal schema for the Klein bottle (a, a, b, b) to obtain the polygonal schema in which opposite edges of a square are identified $\left(a, b, a^{-1}, b\right)$; see Figure II.3.
3. Triangulation of 2 -manifold (two credits). Let $N=\{0,1, \ldots, n-1\}$ be a set of n vertices and $F \subseteq\binom{N}{3}$ a set of $m=\operatorname{card} F$ triangles. Give $\mathrm{O}(n+m)$-time algorithms for the following tasks:
(i) decide whether or not every edge is shared by exactly two triangles;
(ii) decide whether or not every vertex belongs to a set of triangles whose union is a disk.
4. Intersection tests in \mathbb{R}^{3} (two credits). Let $a, b, c \in \mathbb{R}^{3}$ and $u, v, w \in \mathbb{R}^{3}$ be the vertices of two triangles in space. Write numerical tests for the following questions:
(i) does u see a, b, c form a left-turn or a right-turn?
(ii) does the line segment with endpoints u and v cross the plane that passes through a, b, c ?
(iii) are the boundaries of the two triangles linked in \mathbb{R}^{3} ?
5. Irreducible triangulations (three credits). An irreducible triangulation is one in which every edge contraction changes its topological type. Prove that the only irreducible triangulation of \mathbb{S}^{2} is the boundary of the tetrahedron, which consists of four triangles sharing six edges and four vertices.
6. Graphs on Möbius strip (one credit). Is every graph that can be embedded on the Möbius strip planar?
7. Sperner Lemma (three credits). Let K be a triangulated triangular region as in Figure II.12. We 3 -color the vertices such that

- the three corners receive three different colors;
- the vertices on each side of the region are 2-colored.

Prove that there is a triangle in K whose vertices receive three different colors.

Figure II.12: Each vertex receives one of three colors, white, shaded, or black.
8. Square distance minimization (two credits). Let S be a finite set of points in \mathbb{R}^{3} and $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by $f(x)=\sum_{p \in S}\|x-p\|^{2}$.
(i) Show that f is a quadratic function and has a unique minimum.
(ii) At which point does f attain its minimum?

