
2 I Graphs

I.1 Connected Components

A theme that goes through this entire book is the transfer back and forth
between discrete and continuous models of reality. In this first section, we
compare the notion of connectedness in discrete graphs and continuous spaces.

Simple graphs. The abstract concept of a graph is a pair G = (V, E) con-
sisting of set of vertices, V , and a set of edges, E, each a pair of vertices. We
draw the vertices as points or little circles and edges as line segments or curves
connecting the points. Crossings between curves are allowed as they only rep-
resent the edges. The graph is simple if the edge set is a subset of the set of
unordered pairs, E ⊆

(

V

2

)

. For n = cardV vertices, the number of edges is

m = cardE ≤
(

n

2

)

. Every graph with n vertices is a subgraph of the complete

graph, Kn, that has n vertices and all possible m =
(

n

2

)

edges; see Figure I.1.

Figure I.1: The complete graph with five vertices, K5. It has ten edges which form
five crossings if drawn as sides and diagonals of a convex pentagon.

Connectivity. In a simple graph, a path from u ∈ V to v ∈ V can be
described by a sequence of vertices, u = u0, u1, u2, . . . , uk = v, where we have
an edge from ui to ui+1 for each 0 ≤ i ≤ k − 1. Vertices can repeat allowing
the path to cross itself or fold onto itself.

Definition A. A simple graph G is connected if there is a path between
every pair of vertices.

The smallest connected graphs are the trees, which are characterized by having
a unique (non-self-intersecting) path between every pair of vertices; see Fig-
ure I.2. Removing any one edge disconnects the tree. Alternatively, we can



I.1 Connected Components 3

Figure I.2: A tree with ten vertices.

characterize a connected graph by the impossibility to cut it in two.

Definition B. A separation is a non-trivial partition of the vertices, V =
U ∪ W , such that no edge connects a vertex in U with a vertex in W . A simple
graph G is connected if it has no separation.

Topological spaces. A topology of a point set is a collection of subsets
that implicitly defines which points are near each other without specifying the
distance between them. Think of an abstraction of Euclidean space in which
neighborhoods are open balls around points.

Definition. A basis of a topology on a point set X is a collection B ⊆ 2X of
basis elements such that

(i) each x ∈ X is contained in at least one B ∈ B;

(ii) x ∈ B1 ∩ B2 implies there is a third basis element with x ∈ B3 ⊆ B1 ∩ B2.

The topology U generated by B consists of all sets U ⊆ X for which x ∈ U
implies there is a basis element x ∈ B ⊆ U . The pair (X,U) is a topological

space. The sets in U are its open sets.

Note that ∅, X ∈ U , the union of open sets is an open set, and the finite
intersection of open sets is an open set. These are the requirements for (X,U)
to be a topological space. We often call X a topological space, tacitly assuming
that U is understood.

As an example consider X = R and let B be the collection of open intervals.
This gives the usual topology of the real line. Note that the intersection of the



4 I Graphs

intervals (− 1

n
, + 1

n
), for the infinitely many integers n ≥ 1, is the point 0. This

is not an open set which illustrates the need for restricting the intersections to
finite collections.

We often encounter sets inside other sets, Y ⊆ X, and in these cases we can
borrow the topology of the latter for the former. Specifically, if U is a topology
of X then the collection of sets Y ∩ U , for U ∈ U , is the induced topology of Y.
As an example consider the closed interval [0, 1] ⊆ R. We have seen that the
open intervals form the basis for a topology of the real line. The intersections
of open intervals with [0, 1] form the basis of the induced topology of the closed
interval.

Paths and path-connectedness. To formulate Definition A for topological
spaces, we need the notion of a path, which is a special continuous function. A
function f : Y → X between topological spaces is continuous if the preimage
of every open set is open. A path is a continuous function γ : [0, 1] → X. It
connects the point γ(0) to the point γ(1) in X. We allow self-intersections,
calling γ a simple path if it is injective. Figure I.3 illustrates the definitions.

γ0 1

x

y

Figure I.3: A simple and a non-simple path from x = γ(0) to y = γ(1).

Definition. A topological space X is path-connected if every pair of points
is connected by a path.

Connectedness. There is also a counterpart of Definition B for topological
spaces.

Definition. A separation of a topological space X is a partition X = U ∪̇ W
into two non-empty, open subsets. X is connected if it has no separation.



I.1 Connected Components 5

It turns out connectedness is strictly weaker than path-connectedness, although
for most spaces we encounter they are the same. An example of a space that is
connected but not path-connected is the comb with a single tooth deleted; see
Figure I.4. It is constructed by gluing vertical closed intervals to a horizontal

Figure I.4: The comb is [0, 1] × 0 union 1

n
× [0, 1], for all positive integers n, union

0 × [0, 1]. From this we delete 0 × (0, 1).

closed interval and finally deleting the interior of the leftmost vertical interval.
To construct a topology, we take the collection of open disks as the basis of a
topology on R

2 and we use the induced topology for the comb. This space is
connected because it is the union of a path-connected set and a limit point. It
is not path-connected.

Disjoint set systems. We return to graphs and look at the algorithmic ques-
tion of deciding connectedness. We can do this by adding edges one at a time
and maintaining the components as sets in a disjoint set system. Formulated
as an abstract data type, we have three operations manipulating a system S:

add(i): S = S ∪̇ {i};
find(i): return A ∈ S with i ∈ A;
union(A, B): S = S − {A, B} ∪̇ {A ∪̇ B}.

We need the find operation to prevent forming the union of a set with itself.
Each union operation reduces the number of sets in the system by one. Starting
with n elements, it therefore takes n−1 union operations to get to a single set.
Equivalently, every tree with n vertices has m = n − 1 edges.

A standard data structure implementing a disjoint set system stores each set
as a tree, with each element pointing to its parent, as shown in Figure I.5. It
is convenient to assume each root points to itself. We implement find with



6 I Graphs

Figure I.5: Three trees representing the same number of disjoint sets stored in a linear
array. From left to right, the sets have size six, four, and five.

path-compression, which means each time we traverse a path up to the root,
we connect each node along the path directly to the root.

int find(i)
if i.parent 6= i then return i.parent = find(i.parent) endif;
return i.

We execute a union operation whenever we find elements in different sets. We
merge two trees in a weighted manner, connecting the root of the smaller tree
to the root of the larger tree.

A = find(i); B = find(j);
if A 6= B then union(A, B) endif.

void union(A, B)
if A.size > B.size then A ↔ B endif;
A.parent = B.

Using path-compression together with weighted merging implies that the time
needed to execute m union, find, and add operations is at most O(mα(n)),
where α(n) is the notoriously slowly growing inverse of the Ackermann function.

Size functions. Suppose we have a process in time that translates into a
sequence of add and union operations, each with a time-stamp. Given two
moments in time t1 < t2, the two-parameter size function is the number of
components at time t1 that are still disjoint at time t2, which we denote as
s(t1, t2). Draw the process as a tree in which each point represents a component.
Decompose the tree into paths, ending the shorter and continuing the longer
path at every junction, like in Figure I.6 on the left. Then s(t1, t2) is equal to
the number of paths that cross the entire slab between time t1 and time t2.

We can get the same information from a simpler diagram. Draw each path
as a point in the plane with ordinate the time of birth and abscissa the time of



I.1 Connected Components 7

t 1

t 2

tim
e

0

Figure I.6: Left: history of components drawn as a collection of paths forming a tree.
Of the five components at time t1, two are still disjoint at time t2, hence s(t1, t2) = 2.
Right: Diagram in which each point represents a path of the tree. A point lies in the
upper left quadrant iff the corresponding path crosses the entire slab.

death, as in Figure I.6 on the right. Then s(t1, t2) is the number of points in
the upper left quadrant of the point (t1, t2).

Bibliographic notes. Graphs are ubiquitous objects and appear in most
disciplines. Within mathematics, the theory of graphs is considered part of
combinatorics. There are many good books on the subject, including the one
by Tutte [4]. The basic topological notions of connectedness are treated in
books on point-set or general topology, including the text by Munkres [2]. The
computational problem of maintaining a system of disjoint sets is a classic topic
in the field of algorithms and discussed in detail in the text by Tarjan [3]. Size
functions have been introduced relatively recently by Frosini and Landi [1]. We
mention them in this first section because they are elementary and will later
lead naturally to the more involved idea of topological persistence.

[1] P. Frosini and C. Landi. Size functions and morphological transformations.
Acta Applicandae Mathematicae 49 (1997), 85–104

[2] J. R. Munkres. Topology. A First Course. Prentice-Hall, Englewood Cliffs, New
Jersey, 1975.

[3] R. E. Tarjan. Data Structures and Network Algorithms. SIAM, Philadelphia,
Pennsylvania, 1983.

[4] W. T. Tutte. Graph Theory. Addison-Wesley, Reading, Massachusetts, 1984.


