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II.1 Two-dimensional Manifolds

The term ‘surface’ is technically less specific but mostly used synonymous to
‘2-manifold’ for which we will give a concrete definition.

Topological 2-manifolds. Consider the open disk of points at distance less
than one from the origin, D = {z € R? | ||z|| < 1}. It is homeomorphic to
R?, as for example established by the homeomorphism f : D — R? defined by
f(z) =2/(1 — ||z||). Indeed, every open disk is homeomorphic to the plane.

DEFINITION. A 2-manifold (without boundary) is a topological space M
whose points all have open disks as neighborhoods. It is compact if every
open cover has a finite subcover.

Intuitively, this means that M looks locally like the plane everywhere. Exam-
ples of non-compact 2-manifolds are R? itself and open subsets of R?. Examples
of compact 2-manifolds are shown in Figure II.1, top row. We get 2-manifolds
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Figure I1.1: Top from left to right: the sphere, S?, the torus, T?, the double torus,
T24T?2. Bottom from left to right: the disk, the cylinder, the Mébius strip.

with boundary by removing open disks from 2-manifolds with boundary. Alter-
natively, we could require that each point has a neighborhood homeomorphic
to either D or to half of D obtained by removing all points with negative first
coordinate. The boundary of a 2-manifold with boundary consists of all points
x of the latter type. Within the boundary, the neighborhood of every point z
is an open interval, which is the defining property of a 1-manifold. There is
only one type of compact 1-manifold, namely the circle. If M is compact, this
implies that its boundary is a collection of circles. Examples of 2-manifolds
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with boundary are the (closed) disk, the cylinder, and the Mobius strip, all
illustrated in Figure I1.1, bottom row.

We get new 2-manifolds from old ones by gluing them to each other. Specifi-
cally, remove an open disk each from two 2-manifolds, M and N, find a homeo-
morphism between the two boundary circles, and identify corresponding points.
The result is the connected sum of the two manifolds, denoted as M#N. Form-
ing the connected sum with the sphere does not change the manifold since it
just means replacing one disk by another. Adding the torus is the same as
attaching the cylinder at both boundary circles after removing two open disks.
Since this is like adding a handle we will sometimes refer to the torus as the
sphere with one handle, the double torus as the sphere with two handles, etc.

Orientability. Of the examples we have seen so far, the Md&bius strip has
the curious property that it seems to have two sides locally at every interior
point but there is only one side globally. To express this property intrinsically,
without reference to the embedding in R®, we consider a small, oriented circle
inside the strip. We move it around without altering its orientation, like a clock
whose fingers keep turning in the same direction. However, if we slide the clock
once around the strip its orientation is the reverse of what it used to be and we
call the path of its center an orientation-reversing closed curve. There are also
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Figure I1.2: Left: the projective plane, P?, obtained by gluing a disk to a Mobius
strip. Right: the Klein bottle, K2, obtained by gluing two Mdobius strips together.
The vertical lines are self-intersections that are forced by placing the 2-manifolds in
R3. They are topologically not important.

orientation-preserving closed curves in the M6bius strip, such as the one that
goes around the strip twice. If all closed curves in a 2-manifold are orientation-
preserving then the 2-manifold is orientable, else it is non-orientable.

Note that the boundary of the M&bius strip is a single circle. We can therefore
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glue the strip to a sphere or a torus after removing an open disk from the latter.
This operation is often referred to as adding a cross-cap. In the first case we get
the projective plane, the sphere with one cross-cap, and in the second case we
get the Klein bottle, the sphere with two cross-caps. Both cannot be embedded
in R?, so we have to draw them with self-intersections, but these should be
ignored when we think about these surfaces.

Classification. As it turns out, we have seen examples of each major kind
of compact 2-manifold. They have been completely classified about a century
ago by cutting and gluing to arrive at a unique representation for each type.
This representation is a convex polygon whose edges are glued in pairs, called a
polygonal schema. Figure I1.3 shows that the sphere, the torus, the projective
plane, and the Klein bottle can all be constructed from the square. More
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Figure I11.3: Top from left to right: the sphere, the torus, the projective plane, and
the Klein bottle. After removing the (darker) Mdbius strip from the last two, we are
left with a disk in the case of the projective plane and another Mdobius strip in the
case of the Klein bottle. Bottom: the polygonal schema in standard form for the
double torus on the left and the double Klein bottle on the right.

generally, we have a 4g-gon for a sphere with g handles and a 2g-gon for a
sphere with ¢ cross-caps attached to it. The gluing pattern is shown in the
second row of Figure II.3. Note that the square of the torus is in standard
form but that of the Klein bottle is not.
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CLASSIFICATION THEOREM. The two infinite families S2, T2, T2#T?, ... and
P2, P2 P2#4P2, ... exhaust the family of compact 2-manifolds without boundary.

To get a classification of compact 2-manifolds with boundary we can take one
without boundary and make h holes by removing the same number of open
disks. Each starting 2-manifold and each h > 1 give a different surface and
they exhaust all possibilities.

Triangulations. To triangulate a 2-manifold we decompose it into triangu-
lar regions, each a disk whose boundary circle is cut at three points into three
paths. We may think of the region and its boundary as the homeomorphic im-
age of a triangle. By taking a geometric triangle for each region and arranging
them so they share vertices and edges the same way as the regions we obtain
a piecewise linear model which is a triangulation if it is homeomorphic to the
2-manifold. See Figure II.4 for a triangulation of the sphere. The condition

Figure I1.4: The sphere is homeomorphic to the surface of an octahedron, which is a
triangulation of the sphere.

of homeomorphism requires that any two triangles are either disjoint, share an
edge, or share a vertex. Sharing two edges is not permitted for then the two
triangles would be the same. It is also not permitted that two vertices of a
triangle are the same. To illustrate these conditions we note that the triangu-
lation of the first square in Figure I1.3 is not a valid triangulation of the sphere,
but the triangulation of the second square is a valid triangulation of the torus.

Given a triangulation of a 2-manifold M, we may orient each triangle. Two
triangles sharing an edge are consistently oriented if they induce oppose ori-
entations on the shared edge, as in Figure II.4. Then M is orientable iff the
triangles can be oriented in such a way that every adjacent pair is consistently
oriented.
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Euler characteristic. Recall that a triangulation is a collection of triangles,
edges, and vertices. We are only interested in finite triangulations. Letting v, e,
and f be the numbers of vertices, edges, and triangles, the Euler characteristic
is their alternating sum, xy = v—-e -+ f. We have seen that the Euler character-
istic of the sphere is x = 2, no matter how we triangulate. More generally, the
Euler characteristic is independent of the triangulation for every 2-manifold.

EULER CHARACTERISTIC OF COMPACT 2-MANIFOLDS. A sphere with g¢
handles has x = 2 — 2¢g and a sphere with ¢ cross-caps has x =2 — g.

The number g is the genus of M; it is the maximum number of disjoint closed
curves along which we can cut without disconnecting M. To see this result we
may triangulate the polygonal schema of M. For a sphere with g handles we
have f = 1 region, e = 2¢g edges, and v = 1 vertex. Further decomposing the
edges and regions does not change the alternating sum, so we have y = 2 — 2g.
For a sphere with g cross-caps we have f = 1 region, e = g edges, and v = 1
vertex giving x = 2 — ¢g. This result suggests an easy algorithm to recognize
a compact 2-manifold given by its triangulation. First search all triangles
and orient them consistently as you go until you either succeed, establishing
orientability, or you encounter a contradiction, establishing non-orientability.
Thereafter count the vertices, edges, and triangles, and the alternating sum
uniquely identifies the 2-manifold if there is no boundary. Else count the holes,
this time by searching the edges that belong to only one triangle each. For each
additional hole the Euler characteristic decreases by one, giving x =2—2g—h
in the orientable case and x = 2 — g — h in the non-orientable case. The genus,
g, and the number of holes, h, identify a unique 2-manifold with boundary
within the orientable and the non-orientable classes.

Doubling. The compact, non-orientable 2-manifolds can be obtained from
the orientable 2-manifolds by identifying points in pairs. We go the other
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Figure I1.5: Doubling a Md&bius strip produces a cylinder.

direction, constructing orientable from non-orientable manifolds; see Figure
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IL.5. Imagine a triangulation of a non-orientable 2-manifold N in R3, drawn
with possible self-intersections, which we ignore. Make two copies of each
triangle, edge, and vertex off-setting them slightly, one on either side of the
manifold. Here sidedness is local and therefore well defined. The triangles
fit together locally, and because N is orientable, they fit together to form the
triangulation of a connected 2-manifold, M. It is orientable because one side is
consistently facing N. Since all triangles, edges, vertices are doubled we have
x(M) = 2x(N). Using the relation between genus and Euler characteristic we
have x(N) = 2 — g(N) and therefore x(M) = 4 — 2g(N) = 2 — 2g(M). It follows
that M has g(M) = g(N) —1 handles. Hence, the doubling operation constructs
the sphere from the projective plane, the torus from the Klein bottle, etc.

Bibliographic notes. The confusing aspects of non-orientable 2-manifolds
have been captured in a delightful novel about the life within such a surface [1].
The classification of compact 2-manifolds is sometimes credited to Brahana [2]
and other times to Dehn and Heegard [3]. The classification of 3-manifolds, on
the other hand, is an ongoing project within mathematics. With the proof of
the Poincaré conjecture by Perelman, there is new hope that this can be soon
accomplished. In contrast, recognizing whether two triangulated 4-manifolds
are homeomorphic is undecidable [4]. The classification of manifolds beyond
dimension three is therefore hopeless.
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