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II.3 Self-intersections

Since non-orientable compact 2-manifolds without boundary cannot be embed-
ded in three-dimensional Euclidean space, all their models in that space occur
with self-intersections. A practical motivation for looking at the phenomenon
of self-intersections is to repair surface models of solid shapes.

Mapping into space. Let M be a 2-manifold and f : M → R3 a continuous
mapping. For the time being assume f is smooth meaning derivatives of all
orders exist. In the case at hand we have three real-valued functions in two
variables. The matrix of partial derivatives is therefore
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,

consisting of the three gradients. The rank of this matrix is at most two. The
mapping f is an immersion of its derivative has full rank (rank 2) at every point
of M, and it is an embedding if f restricted to its image is a homeomorphism.
For smooth mappings, there are three types of generic self-intersections, all
illustrated in Figure II.9. The most interesting of the three is the branch
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Figure II.9: From left to right: a double point, a triple point, a branch point.

point, which comes in several guises. We can construct it by cutting a disk
from two sides toward the center, folding it, and re-glueing the sides as the
self-intersection, as shown in Figure II.10.

Triangle meshes. Classifying the types of self-intersections is easier in the
piecewise linear case in which M is given by a triangulation K. Since M is a
2-manifold, the triangles that contain a vertex form a disk, or perhaps half a
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Figure II.10: Constructing the Whitney umbrella from a disk.

disk if M has boundary. It is not difficult to see that imposing this condition
on the vertices suffices to guarantee that K triangulates a 2-manifold.

We put K into space by mapping each vertex to a point in R3. The edges and
triangles are mapped to the convex hulls of the images of their vertices. This
mapping is an embedding iff any two triangles are either disjoint or they share a
vertex or they share an edge. Any other intersection is improper and referred to
as a crossing. It is convenient to assume that the points are in general position,
that is, no three are collinear and no four are coplanar. Under this assumption,
there are only three types of crossing possible between two triangles, all shown
in Figure II.11. Each crossing is a line segment common to two triangles. In

Figure II.11: The three ways two triangles in general position in R
3 can cross each

other.

the first case, one of the endpoints coincides with the image of a vertex. The
other endpoint lies on a unique edge, there is a unique other triangle on the
other side of that edge that continues the intersection. In the other two cases
both endpoints lie on edges of the triangulation and the intersection has unique
continuations in both directions.
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Arcs and closed curves. Starting from a single crossing, we can trace the
self-intersection in one or both directions, adding a line segment at a time.
Since we have only finitely many triangles and thus finitely many line segments,
each curve must either close up or end. In the first case we get a closed curve
of almost all double points. Its preimage in K is either a pair of loops or a
single loop that covers the closed curve twice. Such a double covering loop is
necessarily orientation reversing hence M must have been non-orientable. To
construct an example, sweep a line segment along a circle in R

3. The line
segment remains normal to the circle but its angle with the symmetry axis of
the circle can change. If we take the angle from 0 to π during a full revolution
then we get the Möbius strip. If we take it from 0 to π

2
we need a second full

revolution before the surface is complete. We thus get a Möbius strip whose
mapping to R3 crosses itself along the center circle, which is covered twice.

We conclude this section with two immersions of the Klein bottle in R3. In
the first and perhaps most commonly known model, the neck of the bottle
extends and bends backward, like a Flamingo, but then continues and passes
through the surface. The closed intersection curve is the common image of
two orientation preserving loops. To construct the second model, we sweep a
pair of line segments along a circle in R3. The two line segments cross each
other orthogonally at their respective midpoints and they are both orthogonal
to the circle. During a full revolution we take the angle one line segment forms
with the symmetry axis from 0 to π. Correspondingly, the angle formed by the
other line segment goes from −π

2
to π

2
. The two line segments thus sweep out

two Möbius strips crossing each other along their center circles. We can now
complete the Klein bottle by connecting the two boundary curves by a circular
arc, which we again sweep twice around the axis. In other words, we get the
Klein bottle by sweeping a figure-8 curve along the circle, rotating it half-way
so that after a full revolution the two lobes are exchanged. We now have an
immersion in which intersection is a closed curve whose preimage consists of
two orientation-reversing loops.

Bibliographic notes. The way surfaces mapped into R3 intersect is dis-
cussed in length and with many illustrations by Carter [2]. In the generic
case such a mapping has only three types of singularities, double points, triple
points, and branch points. Whitney proved that every d-manifold has an im-
mersion in R2d−1 [4]. This implies that every 2-manifold can be immersed
in R

3, meaning there are smooth mappings without branch points. For the
projective plane we must have a branch point or a triple point which implies
that every immersion has a triple point [1]. Whitney also proved that every
d-manifold can be embedded in R2d [3], so every 2-manifold can be embedded
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in R4.
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