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II.4 Surface Simplification

In applications it is often necessary to simplify the data or its representation.
One reason is measurement noise, which we would like to eliminate, another
are features, which we look for at various levels of resolution. In this section,
we study edge contractions used in simplifying triangulated surface models of
solid shapes.

Edge contraction. Suppose K is a triangulation of a 2-manifold without
boundary. We recall this means that edges are shared by pairs and vertices by
rings of triangles, as depicted in Figure II.9. Let a and b be two vertices and
ab the connecting edge in K. By the contraction of ab we mean the operation
that identifies a with b and removes duplicates from the triangulation. Calling
the new vertex c, we get the new triangulation L from K by

• removing ab, abx, and aby;

• substituting c for a and for b wherever they occur in the remaining set of
vertices, edges, and triangles;

• removing resulting duplications making sure L is a set.

As a consequence of the operation, there are new incidences between edges and
triangles that did not exist in K; see Figure II.9.
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Figure II.9: To contract ab we remove the two dark triangles and repair the hole by
gluing their two left edges to their two right edges.

Algorithm. To simplify a triangulation, we iterate the edge contraction op-
eration. In the abstract setting any edge is as good as any other. In a practical
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situation, we will want to prioritize the edges so that contractions that preserve
the shape of the manifold are preferred. To give meaning to this statement,
we will define shape to mean the topological type of the surface as well as
the geometric form we get when we embed the triangulation in R3. We will
discuss the latter meaning later and for now assume we have a function that
assigns to each edge ab a real number Error(ab) assessing the damage the
contraction of ab causes to the geometric form. Small non-negative numbers
will mean little damage. To write the algorithm, we assume a priority queue
stores all edges ordered by the mentioned numerical error assessment. The pro-
cedure MinExtract removes the edge with minimum error from the priority
queue and returns it. Furthermore, we assume the availability of a boolean test
isSafe that decides whether or not the contraction of an edge preserves the
topological type of the surface.

while priority queue is non-empty do

ab = MinExtract;
if isSafe(ab) then contract ab endif

endwhile.

Some modifications are necessary to recognize edges that no longer belong to
the triangulation and to put edges back into the priority queue when they
become safe for contraction. Details are omitted. The running time of the al-
gorithm depends on the size of local neighborhoods in the triangulation and on
the data structure we maintain to represent it. Under reasonable assumptions
the most time-consuming step is the maintenance of the priority queue, which
for each step is only logarithmic in the number of edges.

Topological type. We now consider the question whether or not the con-
traction of an edge preserves the topological type. Define the link of an edge
ab as the set of vertices that span triangles with ab, and the link of a vertex
a as the set of vertices that span edges with a and the set of edges that span
triangles with a,

Lk ab = {x ∈ K | abx ∈ K};

Lka = {x, xy ∈ K | ax, axy ∈ K}.

Since the topological type of K is that of a 2-manifold without boundary, each
edge link is a pair of vertices and each vertex link is a closed curve made of
edges and vertices in K. Let L be obtained from K by contracting the edge ab.
We slightly abuse language by blurring the difference between a triangulation
and the topological space it triangulates.
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Link Condition Lemma. The triangulations K and L have the same topo-
logical type iff Lkab = Lka ∩ Lk b.

In other words, the topological type is preserved iff the links of a and b intersect
in exactly two points, namely the vertices x and y in the link of ab, as in Figure
II.9.

Proof. We have Lk ab ⊆ Lk a, Lk b, by definition. The only possible violation
to the link condition is therefore an extra edge or vertex in the intersection
of vertex links. If Lka and Lk b share an edge then the contraction of ab
creates a triangle sticking out of the surface, contradicting that L triangulates
a 2-manifold. Similarly, if the two vertex links share a vertex z 6∈ Lk ab then
the contraction of ab creates an edge cz that belongs to four triangles, again
contradicting that L triangulates a 2-manifold.

a b
c

Figure II.10: Mapping the neighborhood of c in L to a triangulated polygon and
overlaying it with a similar mapping of the neighborhoods of a and b in K.

To prove the other direction, we draw the link of c in L as a convex polygon in
R2; see Figure II.10. Using Tutte’s Theorem from Chapter I, we can decompose
the polygon by drawing the triangles incident to c in L. Similarly, we can
decompose the polygon by drawing the triangles incident to a or b in K. We
superimpose the two triangulations and refine to get a new triangulation, if
necessary. The result is mapped back to K and to L, effectively refining the
neighborhoods of a and b in K and that of c in L. The link of c and everything
outside that link is untouched by the contraction. Hence on an outside the
link K and L are the same and inside the link K and L are now isomorphic
by refinement. It follows that K and L are isomorphic and therefore have the
same topological type.
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Square distance. To talk about the geometric meaning of shape we now
assume that K is embedded in R3, with straight edges and flat triangles. To
develop an error measure we use the planes spanned by the triangles. Letting
u ∈ S2 be the unit normal of a plane h and δ ∈ R its off-set, we can write h as
the set of points p ∈ R3 for which 〈p, u〉 = −δ. Using matrix notation for the
scalar product the signed distance of a point x ∈ R3 from h is

d(x, h) = (x − p)T · u = xT · u + δ.

Defining xT = (xT , 1) and uT = (uT , δ) we can write this as a four-dimensional
scalar product, xT ·u. We use this to express the sum of square distances from
a set of planes in matrix form. Letting H be a finite set of planes, this gives a
function EH : R3 → R defined by

EH(x) =
∑

hi∈H

d2(x, hi)

=
∑

hi∈H

(xT · ui)(u
T
i · x)

= xT ·

(

∑

hi∈H

ui · u
T
i

)

· x.

Hence EH (x) = xT ·Q · x, where
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T
i ) =
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is a symmetric, four-by-four matrix we refer to as the fundamental quadric of
the map EH . Writing xT = (x1, x2, x3) we get

EH (x) = Ax2
1 + Bx2

2 + Cx2
3 + 2(Px1x2 + Qx1x3 + Rx2x3)

+ 2(Ux1 + V x2 + Wx3) + Z.

We see that EH is a quadratic map that is non-negative and unbounded. Essen-
tial to the efficient implementation of the error assessment is that for disjoint
unions, H = H1 ∪ H2, the quadrics can be added giving Q = Q1 + Q2.

Error assessment. In the application, we are interested in measuring the
damage to the geometric form caused by contracting the edge ab to the new
vertex c. We think of the operation as a map between vertices, ϕ : Vert K →
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Vert L, defined by ϕ(a) = ϕ(b) = c and ϕ(x) = x for all x 6= a, b. Letting K0

be the initial triangulation, we obtain L by a sequence of edge contractions
giving rise to a composition of vertex maps, which is again a vertex map,
ϕ0 : VertK0 → Vert L. The vertices in Vc = ϕ−1

0 (c) ⊆ Vert K0 all map to c
and we let H be the set of planes spanned by triangles in K0 incident to at
least one vertex in Vc. Finally, we define the error of the contraction of ab as
the minimum, over all possible placements of c as a point in R3, of the sum of
square distances from the planes,

Error(ab) = min
c∈R3

EH(c).

For generic sets of planes, this minimum is unique and easy to compute. The
gradient of E = EH at a point x is the vector of steepest increase, ∇E(x) =
( ∂E

∂x1

(x), ∂E
∂x2

(x), ∂E
∂x3

(x)). It is zero iff x minimizes E. The derivative with
respect to xi can be computed using the multiplication rule,

∂E

∂xi

=
∂xT

∂xi

·Q · x + xT ·Q ·
∂x

∂xi

= QT
i · x + xT ·Qi,

where QT
i is the i-th row of Q. The point c ∈ R3 that minimizes E can thus

be computed by setting ∂E
∂xi

to zero, for i = 1, 2, 3, and solving the resulting
system of three linear equations.

It remains to compute the quadric Q. The simplest strategy is to store a
quadric Qa for every vertex a in K. Initially, in K0, this is the quadric defined
by the triangles sharing a. To evaluate the contraction of the edge ab we use
Q = Qa + Qb, and we store Qc = Q with the new vertex c. Since the sets of
planes that contribute to Qa and Qb are not disjoint, the quadric Qc is not
exactly what we promised. More precisely, a triangle in K0 that has i vertices
in the preimage Vc of c contributes i times to Qc. Since the only possibilities
are i = 0, 1, 2, 3 the difference to the quadric we promised is small and the effect
on the computed simplification seems to be insignificant in practice.

Bibliographic notes. The algorithm described in this section is essentially
the surface simplification algorithm by Garland and Heckbert [3]. It combines
the idea of using edge contraction, which can be found in earlier computer
graphics papers, with the particular error measure remembering the original
form through accumulated quadrics. The test for maintaining the topological
type has been added later and more general versions of the Link Condition
Lemma can be found in [1]. A version of the algorithm that maintains the
quadrics without double counting using inclusion-exclusion is give in [2].
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