
46 III Complexes

III.1 Simplicial Complexes

There are many ways to represent a topological space, one being a collection of
simplices that are glued to each other in a structured manner. Such a collection
can easily grow large but all its elements are simple. This is not so convenient
for hand-calculations but close to ideal for computer implementations. In this
book, we use simplicial complexes as the primary representation of topology.

Simplices. Let u0, u1, . . . , uk be points in Rd. A point x =
∑k

i=0 λiui is an
affine combination of the ui if the λi sum to 1. The affine hull is the set of affine
combinations. It is a k-plane if the k + 1 points are affinely independent by
which we mean that any two affine combinations, x =

∑

λiui and y =
∑

µiui,
are the same iff λi = µi for all i. The k + 1 points are affinely independent iff
the k vectors ui − u0, for 1 ≤ i ≤ k, are linearly independent. In Rd we can
have at most d linearly independent vectors and therefore at most d+1 affinely
independent points.

An affine combination x =
∑

λiui is a convex combination if all λi are non-
negative. The convex hull is the set of convex combinations. A k-simplex is the
convex hull of k + 1 affinely independent points, σ = conv {u0, u1, . . . , uk}. We
sometimes say the ui span σ. Its dimension is dim σ = k. We use special names
of the first few dimensions, vertex for 0-simplex, edge for 1-simplex, triangle
for 2-simplex, and tetrahedron for 3-simplex; see Figure III.1. Any subset of

Figure III.1: From left to right: a vertex, an edge, a triangle, and a tetrahedron.

affinely independent points is again affinely independent and therefore also
defines a simplex. A face of σ is the convex hull of a non-empty subset of the
ui and it is proper if the subset is not the entire set. We sometimes write τ ≤ σ
if τ is a face and τ < σ if it is a proper face of σ. Since a set of size k + 1 has
2k+1 subsets, including the empty set, σ has 2k+1 − 1 faces, all of which are
proper except for σ itself. The boundary of σ, denoted as bd σ, is the union of
all proper faces, and the interior is everything else, int σ = σ − bd σ. A point
x ∈ σ belongs to int σ iff all its coefficients λi are positive. It follows that every
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point x ∈ σ belongs to the interior of exactly one face, namely the one spanned
by the points ui that correspond to positive coefficients λi.

Simplicial complexes. We are interested in sets of simplices that are closed
under taking faces and that have no improper intersections.

Definition. A simplicial complex is a finite collection of simplices K such
that σ ∈ K and τ ≤ σ implies τ ∈ K, and σ, σ0 ∈ K implies σ ∩ σ0 is either
empty or a face of both.

The dimension of K is the maximum dimension of any of its simplices. The
underlying space, denotes as ||K ||, is the union of its simplices together with the
topology inherited from Rd. A polyhedron is the underlying space of a simplicial
complex. A triangulation of a topological space X is a simplicial complex K
together with a homeomorphism between X and ||K ||. The topological space
is triangulable if it has a triangulation. A subcomplex of K is a simplicial
complex L ⊆ K. It is full if it contains all simplices in K spanned by vertices
in L. A particular subcomplex is the j-skeleton consisting of all simplices of
dimension j or less, K(j) = {σ ∈ K | dim σ ≤ j}. The 0-skeleton is also
referred to as the vertex set, Vert K = K(0). Skeleta are generally not full.
A subset of a simplicial complex useful in talking about local neighborhoods
is the star of a simplex τ consisting of all simplices that have τ as a face,
St τ = {σ ∈ K | τ ≤ σ}. Generally, the star is not closed under taking faces.
We can make it into a complex by adding all missing faces. The result is
the closed star, St τ , which is the smallest subcomplex that contains the star.
The link consists of all simplices in the closed star that are disjoint from τ ,
Lk τ = {υ ∈ St τ | υ ∩ τ = ∅}. It τ is a vertex then the link is just the
difference between the closed star and the star. More generally, it is the closed
star minus the stars of all faces of τ . For example if K triangulates a 2-manifold
without boundary then the link of an edge is a pair of points, a 0-sphere, and
the link of a vertex is a cycle of edges and vertices, a 1-sphere.

Abstract simplicial complex. It is often easier to construct a complex
abstractly and to worry abut how to put it into Euclidean space later.

Definition. An abstract simplicial complex is a finite collection of sets A
such that α ∈ A and β ⊆ α implies β ∈ A.

The sets in A are its simplices. The dimension of a simplex is dim α = cardα−1
and the dimension of the complex is the maximum dimension of any of its
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simplices. A face of α is a non-empty subset β ⊆ α, which is proper if β 6= α.
The vertex set is the union of all simplices, Vert A =

⋃

A =
⋃

α∈A α. A
subcomplex is an abstract simplicial complex B ⊆ A. Two abstract simplicial
complexes are isomorphic if there is a bijection b : Vert A → Vert B such that
α ∈ A iff b(α) ∈ B. The largest abstract simplicial complex with a vertex set
of size n has cardinality 2n − 1. Given a (geometric) simplicial complex K, we
can construct an abstract simplicial complex A by throwing away all simplices
and retaining only their sets of vertices. We call A a vertex scheme of K.
Symmetrically, we call K a geometric realization of A but also of every abstract
simplicial complex isomorphic to A. Constructing geometric realizations is
surprisingly easy if the dimension of the ambient space is sufficiently high.

Geometric Realization Theorem. An abstract simplicial complex of di-
mension d has a geometric realization in R2d+1.

Proof. Let f : VertA → R2d+1 be an injection whose image is a set of points
in general position. Specifically, any 2d + 2 or fewer of the points are affinely
independent. Let α and α0 be simplices in A with k = dim α and k0 = dim α0.
The union of the two has size card (α ∪ α0) = cardα+cardα0−card (α ∩ α0) ≤
k + k0 + 2 ≤ 2d + 2. The points in α ∪ α0 are therefore affinely independent,
which implies that every convex combination x of points in α ∪ α0 is unique.
Hence x belongs to σ = conv f(α) as well as to σ0 = conv f(α0) iff x is a convex
combination of α ∩ α0. This implies that the intersection of σ and σ0 is either
empty of the simplex conv f(α ∩ α0), as required.

Simplicial maps. Let K be a simplicial complex with vertices u0, u1, . . . , un.
Every point x ∈ ||K || belongs to the interior of exactly one simplex in K.

Letting σ = conv {u0, u1, . . . , uk} be this simplex, we have x =
∑k

i=0 λiui with
∑k

i=0 λi = 1 and λi > 0 for all i. Setting bi(x) = λi for 0 ≤ i ≤ k and bi(x) = 0
for k+1 ≤ i ≤ n we have x =

∑n

i=0 bi(x)ui and we call the bi(x) the barycentric
coordinates of x in K. We use barycentric coordinates to construct continuous
maps.

Definition. A vertex map is a function ϕ : Vert K → Vert L with the prop-
erty that the vertices of every simplex in K map to vertices of a simplex in L.
Then ϕ can be extended to a continuous map f : ||K || → ||L || defined by

f(x) =

n
∑

i=0

bi(x)ϕ(ui),

the simplicial map induced by ϕ.
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There is an alternative way to think of this construction. Fix a vertex uj and
consider the map bj : ||K || → R which maps each point x to its j-th barycentric
coordinate. The graph of this map has the shape of a hat, increasing from
zero on and outside the link to one at uj . The map bj is continuous and
is sometimes referred to as a basis function. The simplicial map is thus the
weighted sum of the n + 1 basis functions. To emphasize that the simplicial
map is linear on every simplex we usually drop the underlying space from the
notation and write f : K → L. As an example we consider the simplicial map
f : [0, 1]2 → T2 illustrated in Figure III.2. Given the vertex map, the simplicial
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Figure III.2: A vertex map and its induced simplicial map from the square to the
torus.

map is unique and glues the simplices of the triangulation of the square to
obtain a triangulation of the torus. If the vertex map ϕ : Vert K → Vert L
is bijective and ϕ−1 : Vert L → Vert K is also a vertex map then the induced
simplicial map f is a homeomorphism. In this case we call f a simplicial
homeomorphism or an isomorphism between K and L.

Subdivisions. A simplicial complex L is a subdivision of another simplicial
complex K if ||L || = ||K || and every simplex in L is contained in a simplex
in K. There are many ways to construct subdivisions. A particular one is
the barycentric subdivision, L = SdK, illustrated in Figure III.3. A crucial
concept in its construction is the barycenter of a simplex which is the average
of its vertices. We proceed by induction over the dimension. To get started, the
barycentric subdivision of the 0-skeleton is the same, SdK(0) = K(0). Assuming
we have the barycentric subdivision of K(j−1), we construct SdK(j) by adding
the barycenter of every j-simplex as a new vertex and connecting it to the
simplices that subdivide the boundary of the j-simplex.

The diameter of a set in Euclidean space is the supremum over the distances
between its points. Since the simplices of K are point sets in Euclidean space
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Figure III.3: Left: a simplicial complex consisting of two triangles, six edges, and five
vertices. Middle and right: its first two barycentric subdivisions.

their diameters are well defined. The mesh of K is the maximum diameter of
any simplex or, equivalently, the length of its longest edge.

Mesh Lemma. Letting δ be the mesh of the d-dimensional simplicial com-
plex K, the mesh of SdK is at most d

d+1δ.

Proof. Let τ and υ be complementary faces of a simplex σ ∈ K, that is,
τ ∩ υ = ∅ and dim τ = dim υ = dim σ − 1. The line segment connecting the
barycenters of τ and υ has length at most δ, and it splits into two edges in
SdK, in proportions 1 + dim υ to 1 + dim τ . The fraction of length is therefore
between 1

k+1 and k
k+1 , where k = dim σ. Both edges have therefore length at

most d
d+1 times δ.

By the Mesh Lemma we can make the diameters of the simplices as small as
we like by iterating the subdivision operation. For n ≥ 1, the n-th barycentric
subdivision of K is SdnK = Sd(Sdn−1K). As n goes to infinity the mesh of
SdnK goes to zero.

Simplicial approximations. It is sometimes convenient to think of a vertex
star as an open set of points. Formally, we define N(u) =

⋃

σ∈St u int σ. Let K
and L be simplicial complexes. A continuous map g : ||K || → ||L || satisfies the
star condition if the image of every vertex star in K is contained in a vertex
star in L, that is, for each vertex u ∈ K there is a vertex v ∈ L such that
g(N(u)) ⊆ N(v). Let ϕ : Vert K → Vert L map u to the vertex ϕ(u) = v that
exists by the star condition. To understand this new function, we take a point
x in the interior of a simplex σ in K. Its image, g(x), lies in the interior of a
unique simplex τ in L. By definition of star condition, each vertex u of σ maps
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to a vertex ϕ(u) of τ . Hence ϕ is a vertex map and induces a simplicial map
f : K → L. This map satisfies the condition of an simplicial approximation
of g, namely g(N(u)) ⊆ N(f(u)) for each vertex u of K. We illustrated the
definitions in Figure III.4. The image we have in mind is that g and f are not
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Figure III.4: The circle on the left is mapped into the closed annulus by a continuous
map and a simplicial approximation of that map. Corresponding vertices are labeled
by the same letter.

too different. In particular, g(x) and f(x) belong to a common simplex in L
for every x ∈ ||K ||. Given a continuous map g : ||K || → ||L ||, it is plausible that
we can subdivide K sufficiently finely so that a simplicial approximation exists.
To be sure we prove this fact.

Simplicial Approximation Theorem. If g : ||K || → ||L || is continuous
then there is a sufficiently large integer n such that g has a simplicial ap-
proximation f : SdnK → L.

Proof. Cover ||K || with open sets of the form g−1(N(v)), v ∈ Vert L. Since
||K || is compact there is a positive real number λ such that any set of diameter
less than λ is contained in one of the sets in the open cover. Choose n such that
each simplex in SdnK has diameter less than half of λ. Then each star in K
has diameter less than λ implying it lies in one of the sets g−1(N(v)). Hence g
satisfies the star condition implying the existence of a simplicial approximation.

Bibliographic notes. The terminology we use for abstract and geometric
simplicial complexes follows the one in Munkres [3]. We have seen that 2d + 1
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dimensions suffice for the geometric realization of any d-dimensional abstract
simplicial complex. Complexes that require that many dimensions have been
described by Flores [1] and van Kampen [5]. An example of such a complex is
the d-skeleton of the (2d+2)-simplex, which does not embed in R2d. For d = 1
this is the complete graph of five vertices, which does not embed in the plane
as discussed in Chapter I.

A stronger version of the Simplicial Approximation Theorem played an im-
portant role in the development of combinatorial topology during the first half
of the twentieth century. Known as the Hauptvermutung (German for “main
conjecture”), it claimed that any two simplicial complexes that triangulate the
same topological space have isomorphic subdivisions. This turned out to be
correct for simplicial complexes of dimension 2 and 3 but not higher. The first
counterexample found by Milnor was a simplicial complex of dimension 7 [2].
We refer to the book edited by Ranicki [4] for further information on the topic.
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Hamburg 9 (1933), 72-78.


