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II1.2 Convex Set Systems

A convenient way to construct large simplicial complexes is through specifying
sets and recording their intersection patterns.

Nerves. Let F be a finite collection of sets. The nerve consists of all subcol-
lections whose sets have a non-empty common intersection,

NivE = {XCF[[)X #0}

The nerve is an abstract simplicial complex since (| X # () and Y C X implies
NY # 0. We can geometrically realize it in Euclidean space, so it makes
sense to talk about the topology or the homotopy type of the nerve. We will
sometimes do this without explicit construction of the geometric realization.
As an example consider a collection of touching but otherwise not overlapping
closed disks, as in Figure IT1.5. We have pairwise but no triplewise intersections.
The nerve is therefore an abstract graph and it can be geometrically realized
by connecting the centers of the kissing disks.

Figure II1.5: A collection of twelve disks and its nerve drawn as a straight-line graph.

If the sets in the collection are convex then the nerve and the union have the
same homotopy type.

NERVE THEOREM. Let F be a finite collection of closed, convex sets in Eu-
clidean space. Then Nrv F ~ | J F.

The requirement on the sets can be relaxed without sacrificing the conclusion.
Specifically, if | J F' is triangulable, all sets in F' are closed, and all non-empty
common intersections are contractible then Nrv F' ~ | J F.
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Sets with common points. If the convex sets are in d-dimensional Eu-
clidean space then their intersection patterns are restricted. For example, if
three closed intervals intersect in pairs then they intersect as a triple.

HeLLY’S THEOREM. Let F be a finite collection of closed, convex sets in R€.
Every d 4+ 1 of the sets have a non-empty common intersection iff (| F # 0.

PrRoOOF. We prove only the non-obvious direction, by induction over the dimen-
sion, d, and the number of sets, n. The implication is clearly true for n = d+1
and for d = 1. Now suppose we have a minimal counterexample consisting of
n > d + 1 closed, convex sets in R?, which we denote as X1, X»,...,X,. By
minimality of the counterexample, the set Y, = ﬂ?;ll X; is non-empty and
disjoint from X,. Because Y,, and X, are both closed and convex we can find
a (d — 1)-dimensional plane h that separates and is disjoint from both sets, as
in Figure II1.6. Let F’ be the collection of sets Z; = X; Nh, for 1 <i<n—1,

Figure I11.6: The (d — 1)-plane separates the n-th set from the common intersection
of the first n — 1 sets in F.

each a non-empty, closed, convex set in R?~!. By assumption, any d of the first
n—1 sets X; have a common intersection with X,,. It follows that the common
intersection of the d sets contains points on both sides of i implying that any
d of the sets Z; have a non-empty common intersection. By minimality of the
counterexample, this implies [ F’ # ). This intersection is

n—1
F' = (X;Nh) = Y,Nh.
i=1

But this contradicts the choice of h as a (d — 1)-plane disjoint from Y;,.

Similar to the Nerve Lemma, convexity is a convenient but unnecessarily
strong requirement. The conclusion in Helly’s Theorem still holds if the sets in
F' are closed and all their non-empty common intersections are contractible.
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Cech complexes. A unit ball in d dimensions is a set = + BY; its center is
the point = € R? and its radius is 1. Let F' be a finite collection of unit balls in
R?. Clearly, the balls have a non-empty intersection iff their centers lie inside
a common unit ball. Indeed y € (| F' iff || — y|| <1 for all centers x. An easy
consequence of Helly’s Theorem is therefore the following, historically earlier
result.

JUNG’S THEOREM. Let S be a finite set of point in R?. Every d + 1 of the
points lie in a common unit ball iff all points in S lie in a common unit ball.

For a non-negative radius r and for each point € S we consider the ball
B.(r) = x +rB%. The Cech complex of S and r is isomorphic to the nerve of
the set of this collection of balls,

Cech(r) = {o0C S| ﬂ B.(r) # 0}.

This complex does not necessarily have a geometric realization in R? but it is
fine as an abstract simplicial complex; see Figure III.7. For larger radius the

Figure II1.7: Nine points with pairwise intersections among the disks indicated by
straight edges connecting their centers. The Cech complex fills nine of the ten possible
triangles as well as the two tetrahedra. The only difference between the Rips and the
Cech complexes is the tenth triangle, which belongs only to the former.

disks are bigger and create more overlaps while retaining the ones for smaller
radius. Hence Cech(rg) C Cech(r) whenever 7o < r. If we continuously increase
the radius, from 0 to oo, we get a discrete family of nested Cech complexes.
We will come back to this construction later.
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Smallest enclosing balls. Let ¢ C S be a subset of the given points. De-
ciding whether or not o belongs to Cech(r) is equivalent to deciding whether
or not o fits inside a ball of radius r. Let the miniball of o be the smallest
closed ball that contains o, which we note is unique. The radius of the miniball
is smaller than or equal to r iff ¢ € Cech(r), so finding it solves our problem.
Observe that the miniball is already determined by a subset of K4+ 1 < d+ 1
of the points, which all lie on its boundary. If we know this subset then we
can verify the miniball by testing that it indeed contains all the other points.
In a situation in which we have many more points than dimensions the chance
that a point belongs to this subset is small and discarding it is easy. This is
the strategy of the miniball algorithm. It takes two disjoint subsets 7 and v of
o and returns the miniball that encloses 7 and contains all points of v on its
boundary. To get the miniball of o we call MINIBALL(a, 0).

ball MINIBALL(T, v)
if 7 = ) then return BALL(v)
else choose a random point u € T;
B = MINIBALL(T — {u},v);
if u ¢ B then
B = MINIBALL(T — {u},vU{u})
endif
endif; return B.

When 7 is empty we have a set v of at most d 4+ 1 points, which we know all
lie on the boundary. We can therefore compute the miniball directly, using
the function BALL. To analyze the running time, we assume the dimension d
is a constant and ask how often we execute the test “u ¢ B”. Let t;(n) be
the expected number of such tests if we call MINIBALL for n = card7 and
d+1—j = cardv. Obviously, ¢;(0) =0, and it is reassuring that the constant
amount of work needed to compute the ball for the at most d 4+ 1 points in v is
payed for by the test that initiated the call. Consider n > 0. We have one call
with parameters n — 1 and j, one test “u € B”, and one call with parameters
n — 1 and j — 1. The probability that the second call indeed happens is only
%. Hence

ti(n) < ti(n—1)+1+ %tj_l(n ~1).

It follows that to(n) < n and t1(n) < 2n. More generally we have ¢;(n) bounded
from above by some constant times n, where the constant is less than (j+1)!. In
summary, for constant dimension the algorithm takes expected constant time
per point.
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Rips complexes. Instead of checking all subcollections for non-empty com-
mon intersections, we may just check pairs and add 2- and higher-dimensional
simplices whenever we can. The Rips complex of S and r consists of all subsets
of diameter at most 27,

Rips(r) = {o C S |diamo < 2r}.

Clearly, the edges in the Rips complex are the same as in the Cech complex.
Furthermore Cech(r) C Rips(r) because the latter contains every simplex war-
ranted by the given edges. We now prove Rips(r) C Cech(v/2r).

A simplex is regular if all its edges have the same length. A convenient
representation for dimension d is the standard d-simplex, A%, spanned by the
endpoints of the unit coordinate vectors in R?*!; see Figure II1.8. Each edge of

Figure II1.8: The standard triangle.

A4 has length v/2. By symmetry, the distance of the origin from the standard
simplex is its distance from the barycenter, the point p whose d+ 1 coordinates
are all equal to ﬁ. That distance is therefore ||p|| = 1/+/d + 1. The barycen-
ter is also the center of the smallest d-sphere that passes through the vertices
of A?. Writing 74 for the radius of that sphere, we have r3 =1 — Ipll® = #.
For dimension 1 this is indeed half the length of the interval, and for dimen-
sion 2 it is the radius of the equilateral triangle. As the dimension goes to
infinity, the radius grows and approaches 1 from below. Using induction on
the dimension, it is not difficult to prove that every d-simplex of diameter at
most /2 fits inside a ball of radius r4. The d-simplex thus belongs to the Cech
complex for radius rq4, implying Rips(v/2/2) C Cech(ry) in R%. More generally,
Rips(r/v/2) € Cech(rry) € Cech(r) since rq < 1 for all d. This implies the
claimed relationship between Rips and Cech complexes.
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Bibliographic notes. The concept of nerve has been introduced in the early
years of combinatorial topology [1]. The Nerve Theorem goes back to Leray
[4]. It has a complicated literature, with version differing in the generality of
the assumption and the strength of the conclusion. Helly’s Theorem is even
older, being proved first for convex sets and then from sets with contractible
common intersections [2, 3]. The Cech complexes are inspired by the theory of
Cech homology, from which they borrow their name. Algorithms for finding the
smallest ball enclosing a finite set of points have been studied in computational
geometry, culminating in the minidisk algorithm of Welzl which has versions
that are efficient even for large sets in high dimensions [6]. The Rips complex
appears in Vietoris [5] but receives its name from later work by Rips.
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