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III.3 Delaunay Complexes

In this section, we introduce more elaborate geometric constructions to limit
the dimension of the simplices we get from nerves to the dimension of the
ambient space, at least for generic input.

Inversion. Recall that Sd is the d-dimensional sphere with center at the
origin and unit radius in R

d+1. To invert R
d+1, we map each point x 6= 0

to the point on the same half-line whose distance from the origin is one over
the distance of x from 0. More formally, the inversion is the map ι = ι0,1 :

Rd+1 −{0} → Rd+1 −{0} defined by ι(x) = x/‖x‖2
. Clearly, ι(ι(x)) = x. The

inversion maps points inside Sd to points outside Sd and vice versa. Points on
Sd remain fixed. For a point inside Sd we can construct its image, x′ = ι(x),
by drawing right-angled triangles. First we get 0xp with p ∈ Sd and the right
angle at x. Second we draw 0px′ with the right angle at p. The angle at 0 is
the same in both so the two triangles are similar. Hence, ‖x‖ : ‖p‖ = ‖p‖ : ‖x′‖
which implies ‖x‖‖x′‖ = ‖p‖2 = 1, as required.
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Figure III.9: As z sweeps out the circle passing through x and y its inverse image, z′

sweeps out the circle passing through x′ and y′.

A useful property is that inversion preserves spheres. In other words, the set
of images of points on a sphere form another sphere. However, the image of the
center of the first sphere is generally not the center of the second sphere. To
prove this result consider a sphere that does not pass through 0, as in Figure
III.9. Draw the line passing through 0 and the center; it intersects the sphere in
points x and y, which we invert to get points x′ = ι(x) and y′ = ι(y). Let z be
another point on the sphere and z′ = ι(z) its inverse. Then ‖x‖‖x′‖ = ‖z‖‖z′‖
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and hence the triangles 0xz and 0z′x′ are similar. By the same token, 0yz
and 0z′y′ are similar. But xyz has a right angle at z implying the angles at
x′ and y′ inside x′y′z′ add up to a right angle. It follows that x′y′z′ has a
right angle at z′. As z travels on the sphere with diameter xy the image z ′

travels on the sphere with diameter x′y′. What happens when the sphere passes
through the origin, say 0 = x? Then the triangle 0y′z′ has a right angle at
y′. Equivalently, the image of the sphere is the plane normal to the vector y
and passing through the point y′. It thus makes sense to think of a plane as a
sphere with the distinction that it passes through the point at infinity.

Stereographic projection. The inversion of (d + 1)-dimensional space can
be defined relative to any center z ∈ Rd+1 and any radius r > 0. We consider
the special case in which the center is the point N = (0, . . . , 0, 1), the north-
pole of S

d, and the radius is r =
√

2, the Euclidean distance between the
north-pole and the equator. The image of Sd is the d-plane of points with
vanishing (d + 1)-st coordinates, which we denote as Rd. The stereographic
projection is the restriction of this particular inversion to the unit sphere, that
is, ς : Sd − {N} → Rd defined by ς(x) = ιN,

√
2(x); see Figure III.10. A useful

N

Figure III.10: The stereographic projection maps a circle on the unit sphere to a
circle in the plane. If the circle on the sphere passes through the north-pole then its
image is a line, a circle that passes through the point at infinity.

fact is that ς maps every (d − 1)-sphere in S
d to a (d − 1)-sphere in R

d, and
vice versa. Indeed, every (d − 1)-sphere is the intersection of Sd with another
d-sphere. Its image is therefore the intersection of Rd with the image of the
d-sphere, which is another d-sphere. As before, we consider a plane as a special
sphere that passes through the point at infinity. The preimage of that point is
the north-pole, so the preimage of a plane in Rd is a sphere that passes through
the north-pole.
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Voronoi diagram. We will use the stereographic projection and the more
general inversion to elucidate the construction of a particular simplicial complex
from a finite set S ⊆ Rd. The Voronoi cell of a point p in S is the set of points
for which p is the closest,

Vp = {x ∈ R
d | ‖x − p‖ ≤ ‖x − q‖, q ∈ S}.

It is the intersection of half-spaces of points at least as close to p as to q, over
all points q in S. In other words, Vp is a convex polyhedron in Rd. Any two
Voronoi cells meet at most in a common piece of their boundary, and together
the Voronoi cells cover the entire space, as illustrated in Figure III.11.

Figure III.11: The Voronoi diagram of nine points in the plane. By definition, each
vertex of the diagram is equally far from the points that generate the incident Voronoi
cells and further from all other points in S.

Power diagrams. In some circumstances, it is convenient to generalize the
concept and consider points with real weights. Writing wp for the weight of
the point p ∈ S, the weighted square distance or power of a point x ∈ Rd from
p is πp(x) = ‖x − p‖2 − wp. For positive weight we can interpret the weighted
point as the sphere with center p and square radius wp. For a point x outside
that sphere the power is positive and equal to the square length of a tangent
line segment from x to the sphere. For x on the sphere the power is zero, and
for x inside the power is negative. The bisector of two weighted points is the
set of points with equal power from both. Just like in the unweighted case,
the bisector is a plane normal to the line connecting the two points, except
that it is not necessarily halfway between them; see Figure III.12. In complete
analogy to the unweighted case, we define the weighted Voronoi or power cell
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Figure III.12: The bisector of two weighted points. From left to right: two circles
side by side, two intersecting circles, and two nested circles.

as the set of points for which p minimizes the power,

Vp = {x ∈ R
d | πp(x) ≤ πq(x), q ∈ S}.

Diagrams consisting of weighted or unweighted Voronoi cells look rather similar
and are difficult to distinguish by eye, unless the locations of the generating
points are marked. In the unweighted case each point has a non-empty Voronoi
cell while in the weighted case a cell can be empty.

Lifting. We get a different and perhaps more illuminating view of Voronoi
cells by lifting them to one higher dimension. Let S be a finite set of points in
Rd, as before, but draw them in Rd+1, adding zeros as (d + 1)-st coordinates.
Map each point p in S to Sd using inverse stereographic projection, and let
hp be the d-plane tangent to Sd touching the sphere in the point ς−1(p), as
illustrated in Figure III.13. Using inversion, we now map each d-plane hp to
the d-sphere sp = ι(hp). It passes through the north-pole and is tangent to
Rd, the preimage of Sd. The arrangements of planes and of spheres are closely
related to the diagram of Voronoi cells. We focus on the spheres first.

Claim A. A point x ∈ Rd belongs to the Voronoi cell of p ∈ S iff the first
intersection of the directed line segment from x to N is with the d-sphere sp.

Proof. Interpret the sphere sp as a weighted point, namely the center with
weight equal to the square radius. The power of a point x is the square length
of a tangent line segment, which is equal to ‖x − p‖2

if x ∈ Rd. It follows that
the weighted Voronoi cell of the weighted center intersect Rd in the Voronoi
cell of p. The claim follows because all bisectors of the weighted points pass
through N .

Switching from spheres to planes we get a similar characterization of the
Voronoi diagram in terms of tangent planes.
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Figure III.13: We map p and q in R
1 to lines hp and hq tangent to S

1 and further
to circles sp and sq passing through N and tangent to R

1. The dashed line passes
through the intersection of the two circles, the intersection of the two lines, as well
as the midpoint between p and q.

Claim B. A point x ∈ Rd belongs to the Voronoi cell of p ∈ S iff the first
intersection of the directed line segment from N to x is with the d-plane hp.

Delaunay triangulation. The Delaunay complex of a finite set S ⊆ Rd is
isomorphic to the nerve of the collection of Voronoi cells,

Delaunay = {σ ⊆ S |
⋂

p∈σ

Vp 6= ∅}.

We say the set S is in general position if no d + 2 of the points lie on a com-
mon (d− 1)-sphere. The center of this sphere is in the common intersection of
the Voronoi cells generated by the points on the sphere. The general position
assumption thus implies that no d+2 Voronoi cells have a non-empty common
intersection. Equivalently, the dimension of any simplex in the Delaunay com-
plex is at most d. Assuming general position, we get a geometric realization
by taking convex hulls of points in S. The result is often referred to as the
Delaunay triangulation of S; see Figure III.14 for a two-dimensional example.

We conclude this section with a proof that taking convex hulls indeed gives
a geometric realization of the Delaunay complex. Let ι(S) be the set of points
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Figure III.14: The Delaunay triangulation superimposed on the Voronoi diagram.
No four of the given points are cocircular implying that the Delaunay complex has
simplices of dimension at most 2 and therefore a natural geometric realization in R

2.

lifted to Sd. Add N to this set and consider the convex hull of ι(S) ∪ {N},
which is a convex polytope P in Rd+1.

Claim C. Let S ⊆ Rd be a finite set of points in general position. A point
x ∈ Rd belongs to a d-simplex conv {p0, p1, . . . , pd} in the Delaunay triangula-
tion of S iff the open line segment from N to x intersects the boundary of P
in the facet which is the convex hull of the points ι(p0), ι(p1), . . . , ι(pd).

Proof. The convex hull of p0, p1, . . . , pd is a d-simplex in the Delaunay trian-
gulation iff all other points of S lie outside the d-sphere that passes through the
d + 1 points. The preimage of that d-simplex under stereographic projection
is a (d − 1)-sphere in S

d. Take the d-plane whose intersection with S
d is this

(d − 1)-sphere. The preimages of p0 to pd lie in this d-plane and those of all
other points in S lie on the same side as N . Hence, the d + 1 preimages form
a facet of the convex hull iff the d + 1 points form a simplex in the Delaunay
triangulation. By construction, the d-simplex is the central projection of the
facet from the north-pole.

Bibliographic notes. Voronoi diagrams are named after Georgy Voronoi
[3] and Delaunay triangulations after Boris Delaunay (also Delone) [2]. Both
structures have been studied centuries earlier and the oldest record we still have
are notes from René Descartes. They are also immensely popular in many areas
of science; see for example the survey article by Aurenhammer [1].
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