
66 III Complexes

III.4 Alpha Complexes

In this section, we use a radius constraint to introduce a family of subcomplexes
of the Delaunay complex. These complexes are similar to the Čech complexes
but differ from them by having natural geometric realization.

Union of balls. Let S be a finite set of points in Rd and r a non-negative
real number. For each p ∈ S we let Bp(r) = p + rBd be the closed ball with
center p and radius r. The union of these balls is the set of points at distance
at most r from at least one of the points in S,

Union(r) = {x ∈ R
d | ∃p ∈ S with ‖x − p‖ ≤ r}.

To decompose the union, we intersect each ball with the corresponding Voronoi
cell, Rp(r) = Bp(r) ∩ Vp. Since balls and Voronoi cells are convex, the Rp(r)
are also convex. Any two of them are disjoint or overlap along a common piece
of their boundaries, and together the Rp(r) cover the entire union, as in Figure
III.15. The alpha complex is isomorphic to the nerve of this cover,

Figure III.15: The union of disks is decomposed into convex regions by the Voronoi
cells. The corresponding alpha complex is superimposed.

Alpha(r) = {σ ⊆ S |
⋂

p∈σ

Rp(r) 6= ∅}.

Since Rp(r) ⊆ Vp, the alpha complex is a subcomplex of the Delaunay complex.
It follows that for a set S in general position we get a geometric realization by
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taking convex hulls, as in Figure III.15. Furthermore, Rp(r) ⊆ Bp(r) which im-
plies Alpha(r) ⊆ Čech(r). Since the Rp(r) are closed and convex and together
they cover the union, the Nerve Theorem implies that Union(r) and Alpha(r)
have the same homotopy type.

Weighted alpha complexes. For many applications it is useful to permit
balls with different sizes. An example of significant importance is the modeling
of biomolecules, such as proteins, RNA, and DNA. Each atom is represented
by a ball whose radius reflects the range of its van der Waals interactions and
thus depends on the atom type. Let therefore S be a finite set of points p with
real weights wp. Same as in Section III.3, we think of p as a ball Bp with center
p and radius rp =

√
wp. We again consider the union of the balls, which we

decompose into convex regions now using weighted Voronoi cells, Rp = Bp ∩ Vp.
This is illustrated in Figure III.16. In complete analogy to the unweighted case

Figure III.16: Convex decomposition of a union of disks and the weighted alpha
complex superimposed.

the weighted alpha complex of S is defined to be isomorphic to the nerve of the
regions Rp, that is, the set of simplices σ ⊆ S such that

⋂

p∈σ Rp 6= ∅. The
weighted alpha complex is a subcomplex of the weighted Delaunay complex
which is isomorphic to the nerve of the collection of weighted Voronoi cells.

We need S to be in general position to guarantee that taking convex hulls
of input points gives a geometric realization. Since the points are weighted,
the notion of general position is slightly different from the unweighted case.
In particular, it needs to imply that d + 2 or more Voronoi cells have no non-
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empty common intersection. To see what this means let x ∈ Rd be a point
in the common intersection of the weighted Voronoi cells Vp with p ∈ σ. By
definition, the weighted square distances from x to the points are all the same.
It follows there is a weight w ∈ R such that w = ‖x − p‖ − r2

p for all p ∈ σ.
If x is outside the balls Bp then this weight is positive and the sphere with
center x and radius r =

√
w is well defined. It is orthogonal to the balls Bp

in the sense that ‖x − p‖2
= r2

p + r2 for all p ∈ σ. The same formula works
even if p lies on the boundary or in the interiors of the balls, except that the
weight w is then zero or negative. We say a finite set of weighted points is in
general position if there is no point x with equal weighted square distance to
d + 2 or more of the points. Equivalently, no d + 2 of the balls are orthogonal
to a common (possibly imaginary) d-sphere.

Filtration. Given a finite set S ⊆ Rd, we can continuously increase the
radius and thus get a 1-parameter family of nested unions. Correspondingly,
we get a 1-parameter family of nested alpha complexes. Because they are all
subcomplexes of the Delaunay complex, which is finite, only finitely many of
the alpha complexes are different. Writing K i for the i-th alpha complex in
the sequence, we get

∅ = K0 ⊂ K1 ⊂ . . . ⊂ Km,

which we call a filtration of Km = Delaunay. It is a stepwise construction of
the final complex in such a way that every set along the way is a complex.

The construction of a filtration is straightforward in the unweighted case and
can be extended to the weighted case as follows. Let p be a point with weight
wp. For each r ∈ R we let Bp(r) be the ball with center p and radius

√

wp + r2

and denote the corresponding alpha complex by Alpha(r). The collection of
such balls, interpreted as weighted points, defines the same weighted Voronoi
diagram for any choice of r. It follows that every weighted alpha complex
is a subcomplex of the same weighted Delaunay complex. Furthermore, the
balls are nested, Bp(r0) ⊆ Bp(r) for r0 ≤ r, so the weighted alpha complexes
are nested and define a filtration of the weighted Delaunay complex. We are
interested in the difference between two contiguous complexes in the filtration,
Ki+1 −Ki. We will see shortly that generically this difference is either a single
simplex or a collection that forms an anticollapse.

Collapses. Let K be a simplicial complex. It is convenient to call a simplex
in the star a coface. A simplex in K is free if it has a unique proper coface.
The star of a free simplex thus contains exactly two simplices, namely the
simplex itself and the unique proper coface. An elementary collapse is the
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operation that removes a free simplex together with its unique proper coface.
An elementary anticollapse is the inverse of that operation. If the free simplex
is τ with dimension k = dim τ then the unique proper coface σ has dimension
k + 1 = dim σ and the elementary collapse that removes τ and σ is called
a (k, k + 1)-collapse. Each elementary collapse corresponds to a deformation
retraction of the underlying space, which implies that it does not change the
homotopy type. Consider the special case in which K is the set of faces of a
d-simplex. As illustrated in Figure III.17, this d-simplex can be reduced to a
single vertex by a sequence of 2d−1−1 elementary collapses. Starting with 2d−1
faces, each elementary collapse removes two, leaving 2d − 1 − 2(2d−1 − 1) = 1
face, which is necessarily a vertex.

Figure III.17: From left to right: a tetrahedron, the three triangles left after a (2, 3)-
collapse, the three edges left after three (1, 2)-collapses, the vertex left after three
(0, 1)-collapses.

It is convenient to extend the notion of collapse and consider pairs of simplices
τ < σ whose dimensions differ by one or more. Instead of requiring that τ be
free, we now require that all cofaces of τ are faces of σ. Letting k = dim τ and
` = dim σ we get

(

`−k
i

)

simplices of dimension i + k and therefore a total of

2`−k =
∑`−k

i=0

(

`−k
i

)

simplices between τ and σ, including the two. They form
the structure of an (`−k)-simplex, which can be collapsed down to a vertex by
a sequence of 2`−k−1 − 1 elementary collapses. Each (i, i + 1)-collapse in this
sequence corresponds to an (i + k + 1, i + k + 2)-collapse in the sequence that
removes the faces of τ . We append a (k, k + 1)-collapse which finally removes
τ together with the last remaining proper coface. We refer to this sequence
of 2`−k−1 elementary collapses as a (k, `)-collapse. Since elementary collapses
preserve the homotopy type so do the more general collapses.

Critical and regular simplices. Let ri be the smallest radius such that
Ki = Alpha(ri). A simplex τ belongs to Ki+1 but not to Ki if the balls with
radius ri+1 have a non-empty common intersection with the corresponding
intersection of Voronoi cells but the balls with radius ri do not; see Figure
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III.18. Assuming general position and dim τ = k, the intersection of Voronoi
cells, Vτ = ∩ p∈τVp, is a convex polyhedron of dimension d − k. By definition
of ri+1 the balls Bp(ri+1) intersect Vτ in a single point, x.

Figure III.18: Left: three points spanning an acute triangle. In the alpha complex
evolution, the three edges appear first before the triangle enters as a critical simplex.
Right: three points spanning an obtuse triangle. Two edges appear first and the
triangle enters together with the third edge.

Consider first the case that x lies on the boundary of Vτ . Then there are
other Voronoi polyhedra for which x is the first contact with the union of
balls. Assume Vτ is the polyhedron with highest dimension in this collection
and let Vσ be the polyhedron with lowest dimension. Correspondingly, τ is
the simplex with lowest dimension in K i+1 − Ki and σ is the simplex with
highest dimension. The other simplices in K i+1 − Ki are the faces of σ that
are cofaces of τ . In other words, we obtain K i from Ki+1 by a (k, `)-collapse,
where k = dim τ and ` = dim σ. We call all simplices participating in this
collapse regular.

Consider second the case that x lies in the interior of Vτ and it is not the first
contact for any higher-dimensional Voronoi polyhedron. In other words, τ is
the only simplex in Ki+1 −Ki. We call τ critical because its addition changes
the homotopy type of the complex. Since the union of balls has the homotopy
type of the complex, we know that also the union changes its type when the
radius reaches ri+1.

Bibliographic notes. Alpha complexes have been introduced for points in
R

2 by Edelsbrunner, Kirkpatrick, and Seidel [2]. They have been extended to
R3 in [3] and to weighted points in general, fixed dimension in [1]. The three-
dimensional software written by Ernst Mücke has been popular in many areas
of science and engineering, including structural molecular biology where they
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serve as an efficient representation of proteins and other biomolecules. Alpha
complexes have been the starting point of the work on persistent homology
which will be discussed in Chapter V.

The difference between critical and regular simplices reminds us of the dif-
ference between critical and regular points of Morse functions, which will be
studied in Chapter VI. The connection is direct but made technically difficult
because Morse theory has been developed principally for smooth functions [4].
The union of balls is a sublevel set of the continuous but not smooth distance
function defined by the data points. An early bridge between the two cate-
gories has been built by Marston Morse himself who introduced the concept
of topological Morse function [5], of which the distance function on Rd is an
example.
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