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IV.2 Homology

Similar to the fundamental group, the homology groups provide a language
to talk about holes of topological spaces. The main differences are that ho-
mology groups are abelian, have fast algorithms, and easily extend to higher
dimensions.

Cycles and holes. It has been said that in d-dimensional space the prisons
are made of (d—1)-dimensional walls. This is because a wall of dimension d —2
or less cannot separate any portion of the space from the rest. A more formal
expression of this observation is a statement that relates a subset of space with
the complement using the language of homology.

ALEXANDER DUALITY THEOREM. For any non-empty, triangulable subset
X C S? we have H,(X) ~ HI-P~1(S§? — X).

In words, the p-th reduced homology group of X is isomorphic to the (d—p—1)-
st reduced cohomology group of its complement in S?. More intuitively, the
p-dimensional cycles in X surround the (d—p—1)-dimensional holes. It will take
a while before all terms in the theorem will be defined. There are, however,
valuable messages we can take away without penetrating the full depths of
the theorem. The first is the existence of a direct relationship between the
cycles and the holes. The second is that this relationship requires a fixed
ambient space, in this case the d-dimensional sphere which is a good model
of d-dimensional Euclidean space. In homology theory, we gain generality by
almost exclusively talking about cycles and thus not committing to any ambient
space.

Chain complexes. Let K be a simplicial complex. A p-chain is a formal sum
of p-simplices in K. The standard notation for this formal sum is ¢ = 3 a;0y,
where o; is a p-simplices in K and a; is either 0 or 1. Alternatively, we can think
of ¢ as the set of p-simplices o; with a; = 1, but this would make generalizations
to coefficient groups other than addition modulo 2 more cumbersome. Two p-
chains are added componentwise, like polynomials. Specifically, if ¢o = 3 b;0;
then ¢+ ¢y = Y (a; 4+ b;)o;, where the coefficients are integers modulo 2, so
1+1 = 0. In set notation, the sum of two p-chains is their symmetric difference.
The p-chains together with the addition operation form the group of p-chains
denoted as (Cp,+) or simply C, if the operation is understood. Associativity
follows from associativity of addition modulo 2. The neutral element is 0 =
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>~ 00;. The inverse of ¢ is —c¢ = ¢ since ¢+ ¢ = 0. Finally, C,, is abelian because
addition modulo 2 is commutative.

We have a group of p-chains for each integer p. For p < 0 and p > dim K this
group is trivial, consisting only of the neutral element. To relate these groups,
we define the boundary of a p-simplex as the sum of its (p — 1)-dimensional
faces. Writing o = [ug, U, - . ., up] for the simplex spanned by the vertices ug
to up, its boundary is

P
8,,0 = Z[uo,...,ﬁi,...,up],
i=0
where the hat indicates that u; be dropped. For a p-chain ¢ = Y a;0; the
boundary is the sum of boundaries of its simplices, dp,c = Y a;0,0;. Taking
the boundary commutes with addition, d,(c + co) = Opc + Jpcp. Hence, 0, :
Cp, — Cp—1 is @ homomorphism. The chain complex is the sequence of chain
groups connected by boundary homomorphisms,

O e, B,
It will be convenient to drop the index from the boundary homomorphism since
it is implied by the dimension of the chain.

Cycles and boundaries. We distinguish two particular types of chains and
use them to define homology groups. A p-cycle is a p-chain with empty bound-
ary, dc = 0. Since d commutes with addition, we have a group of p-cycles,
denoted as Z, < C,, which is a subgroup of the group of p-chains. In other
words, the group of p-cycles is the kernel of the p-th boundary homomorphism,
Z, = kerd,. Since the chain groups are abelian so are their cycle subgroups.
Consider p = 0 as an example. The boundary of every vertex is zero, and 0 is
indeed the only element in C_;. Hence, Zy = ker g = Co.

A p-boundary is a p-chain that is the boundary of a (p+1)-chain, ¢ = dd with
d € Cpyq1. Since 0 commutes with addition, we have a group of p-boundaries,
denotes as B, < C,. In other words, the group of p-boundaries is the image
of the (p + 1)-st boundary homomorphism, B, = imd,41. Since the chain
groups are abelian so are their boundary subgroups. Consider p = 0 as an
example. Every 1-chain consists of some number of edges with twice as many
endpoints. Taking the boundary cancels duplicate endpoints in pairs leaving
and even number. Hence, every 0-chain with an even number of vertices in
each component is a 0-boundary. If K is connected this implies that half the
0-cycles are O-boundaries. The fundamental property that makes homology
work is that the boundary of a boundary is necessarily zero.
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FUNDAMENTAL LEMMA OF HOMOLOGY. 0p0p41d = 0 for every integer p
and every (p + 1)-chain d.

PROOF. We just need to show that 9,017 = 0 for a (p + 1)-simplex 7. The
boundary, 9,117, consists of all p-faces of 7. Every (p — 1)-face of 7 belongs to
exactly two p-faces, so 0, (0p417) = 0.

It follows that every p-boundary is also a p-cycle or, equivalently, that B,
is a subgroup of Z,,. Figure IV .4 illustrates the subgroup relations among the
three types of groups and their connection across dimensions through boundary
homomorphisms.

Figure IV.4: The chain complex consisting of a linear sequence of chain, cycle, and
boundary groups connected by boundary homomorphisms.

Homology groups. Since the boundaries form subgroups of the cycle
groups, we can take quotients, which are the homology groups, H, = Z,/B,.
Each element is a collection obtained by adding each p-boundary to a given
p-cycle, ¢ + B, with ¢ € Z,. More formally, this collection is called a coset.
Any two cycles in the same coset are said to be homologous, which is denoted
as ¢1 ~ ca; see Figure IV.5. We may take c as the representative of this coset

<>

Figure IV.5: A torus with three closed curves, each a 1-cycle. Only one a 1-boundary
and it is homologous to the sum of the other two. The sum of the three curves is
therefore a 1-boundary, namely of the pair of pants between them.
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but any other cycle of the form ¢+ dd does as well. Similarly, addition of two
cosets, (c+By)+ (co+By) = (c+co) + By, is independent of the representatives
and therefore well defined. We thus see that H,, is indeed a group, and because
Z, is abelian so is H,.

For groups the cardinality is called the order. Since we use addition modulo
2, ord C, = 2" if n,, is the number of p-simplices in K, and C,, is isomorphic to
Zy", the group of bit-vectors of length n, together with the exclusive-or oper-
ation. This is an n,-dimensional vector space which is therefore generated by
nyp bit-vectors, for example the vectors that have a single 1 each corresponding
to individual p-simplices in K. The dimension is referred to as the rank of the
vector space, n, = rankZ," = rank C,. The cycles, boundaries, and cochains
exhibit the same vector space structure, except that their dimension is usually
less than that of the chains. The number of cycles in a coset is the order of By,
hence the number of cosets in the homology group is ordH, = ordZ,/ord B,.
Equivalently, the rank is the difference,

B, = rankH, = rankZ,—rankB,.

This is the p-th Betti number of K. This discussion suggests two ways to
illustrate a homology group, as a partition of the set of cycles into cosets and
the hypercube of dimension 3,; see Figure IV.6. As an example consider the
triangulation of a torus. There are only four cosets in Hy, namely B, a + By,
b+ b1, and (a + b) + By, where a and b are the non-bounding 1-cycles that go
once around the hole and the arm of the torus. The two corresponding cosets,
a + By and b+ By, generate the first homology group.

b a+b
at+b+ By

0 a

Figure IV.6: The first homology group of the torus has rank 2 and order 4. On the
left, the four elements are cosets in the group of 1-cycles. On the right, the four
elements are the vertices of a square.

Euler-Poincaré formula. Recall that the Euler characteristic of a simplicial
complex is the alternating count of simplices. Writing n, = rank C, for the
number of p-simplices in K, as before, and z, = rankZ,, and b, = rank B, we
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have n, = 2z, +b,—1. The Euler characteristic is the alternating sum of the n,,
which is therefore

X = Z(_l)p(zp + bp-1)

p=>0

= Z(_l)p(zp —bp)

p=>0

= Z(_l)pﬁp'

p=>0

To appreciate the beauty of this result we need to know that homology groups
do not depend on the triangulation chosen for a topological space. The technical
proof of this claim is a bit cumbersome and omitted but even the more general
result that homotopy equivalent spaces have isomorphic homology groups is
plausible. For example, we can free ourselves from the triangulation entirely
and define chains in terms of continuous maps from the standard simplex into
the space X. This gives rise to so-called singular homology, which has been
shown to give groups isomorphic to the ones we get by simplicial homology,
which is the theory we describe in this section. If we now have a continuous
map f : X — Y we can literally map the cycles from X to Y. If f is a homo-
topy equivalence then we can map both ways and thus guarantee isomorphic
homology groups. This also implies that the Euler characteristic is an invariant
of the space, that is, it does not depend on the simplicial complex we use to
triangulate it.

EULER-POINCARE THEOREM. The Euler characteristic of a topological
space is the alternating sum of its Betti numbers, y = Zp>0 Bp-

As an example consider the torus. It is connected so half of its 0-cycles are
0-boundaries implying ord Zy/ord By = 2 and therefore 8y = 1. We have seen
that 81 = 2. Finally, 82 = 1 because there is only one 2-cycle, namely the sum
of all triangles, and no 2-boundary. The Euler characteristic of the torus is
indeed x=1-241=0.

Reduced homology. We obtain a small but often useful modification of
homology by adding the augmentation map € : Cy — Zo defined by e(u) = 1
for each vertex u. We thus get

0: 1%} 0
—2>C1—1>C0i>Z2—>0—>

Cycles and boundaries are defined as before and the only difference we notice
is for Zy which now requires that each 0-cycle has an even number of vertices.
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This results in the reduced homology groups, |:|p, and the reduced Betti numbers,
B, = rankH,. Assuming K is non-empty, we have 3, = 3, for all p > 1 and
Bo =By — 1. For K = () we have 3_; = 1 since both elements of Z, are (—1)-
cycles (they belong to the kernel) but only one is a (—1)-boundary (it belongs
to the image of the augmentation map).

Degree of a map. We can use homology to prove Brouwer’s Fixed Point
Theorem, now in the general, d-dimensional setting. To this end let ¢ : §¢ — S¢
be a continuous map. Let ¢ be the unique generator of the d-th homology group.
Then ¢(c) is either homologous to ¢ or to 0. In other words, ¢(c) ~ dc and
d € {0,1} is called the degree of . If ¢ is the identity then § = 1. However, if
¢ extends a continuous map 1 : B4t! — S? then the induced map on homology
groups ¢x : Hg(S%) — Hg(S?) is the composite of two induced maps,

Ha(S?) — Ha(BT") — Ha(S7),

where the first is induced by inclusion. The middle group is trivial, hence § = 0.
We are now ready to prove the theorem.

BROUWER’S FIXED POINT THEOREM. A continuous map f : B4+t — Bdt+1
has at least one fixed point z = f(z).

PROOF. Let A, B : S¢ — S% be maps defined by A(z) = (x — f(z))/||lz — f(2)]
and B(x) = z. B is the identity and therefore has degree 1. If f has no fixed
point then A is well defined and has degree 0 because it extends a map from
the ball to the sphere. We now construct H : S% x [0,1] — S? defined by
H(z,t) = (x —tf(z))/||lx — tf(x)|. For t =1 we have x # f(z) because there
is no fixed point and for ¢t < 1 we have = # ¢f(x) because ||z| =1 > [[tf(z)]].
We conclude that H is a homotopy between A and B which implies that the
degrees of the two are the same, a contradiction.

Bibliographic notes. Like many other concepts in topology, homology
groups have been introduced by Henri Poincaré in one of a series of papers
on “analysis situ” [4]. He named the ranks of the homology groups after an-
other mathematician, Betti, who introduced a slightly different version years
earlier. The field experienced a rapid development during the twentieth cen-
tury. There were many competing theories, simplicial and singular homology
just being two examples, which have been consolidated by axiomizing the as-
sumptions under which homology groups exist [1]. Today we have a number of
well established textbooks in the field. We refer to Giblin [2] for an intuitive
introduction and to Munkres [3] for a more comprehensive source..
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