
88 IV Topological Groups

IV.3 Matrix Reduction

In this section, we show how to compute Betti numbers of triangulated topolog-
ical spaces. We also introduce the notion of relative homology which is useful
in studying spaces that are not necessarily closed.

Boundary matrices. It is convenient to represent the boundary operator
as a matrix that records the incidences between simplices. Using standard row
and column operations we can extract the ranks of cycle and boundary groups
and this way compute Betti numbers. Let K be a simplicial complex. Its p-th
boundary matrix represents the (p − 1)-simplices as rows and the p-simplices
as columns. Assuming an ordering on the simplices of the same dimension,
this matrix is ∂p = [aj

i ], where i ranges from 1 to np−1, j ranges from 1 to np,

and aj
i = 1 iff the i-th (p − 1)-simplex is a face of the j-th p-simplex. Given

an np-vector representing a p-chain, the boundary can be computed by matrix
multiplication,
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In words, a collection of columns represents a p-chain and the sum of these
columns gives its boundary. Similarly, a collection of rows represents a (p− 1)-
chain and the sum of these rows gives its coboundary, a concept that will be
defined in the next section.

Row and column operations. The rows of the matrix ∂p form a basis of
the (p − 1)-st chain group, Cp−1, and the columns form a basis of the p-th
chain group, Cp. We use two types of column operations to modify the matrix
without changing its rank: exchanging columns k and l and adding column k
to column l. Both can be expressed by multiplying with a matrix V = [vj

i ]
from the right. To exchange two columns we have vl

k = vk
l = 1 and vi

i = 1 for
all i 6= k, l. All other entries are zero. To add column k to column l we have
vl

k = 1 and vi
i = 1 for all i. All other entries are zero. As indicated in Figure

IV.7, the effect of the operation is that the l-th column now represents the sum
of the k-th and the l-th p-simplices, or the sum of whatever the two columns
represented before the operation. We have similar two row operations, one
exchanging two rows and the other adding one row to another. This translates
to multiplication with a matrix U = [uj

i ] from the left. To exchange two rows
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Figure IV.7: The effect of a single off-diagonal one in the matrix V is the addition
of one column in the boundary matrix to another. The effect on the basis of Cp is
similar.

we again have ul
k = uk

l = 1, ui
i = 1 for i 6= k, l, and all other entries zero. To

add the k-th to the l-th row we have uk
l = 1, ui

i = 1 for all i, and all other
entries zero, as in Figure IV.8. The effect of this operation is that the k-th

l

k

k

l l

k+l
=

Figure IV.8: The effect of a single off-diagonal one in the matrix U is the addition of
one row in the boundary matrix to another. The effect on the basis of Cp−1 is that
the row that was added now represents the sum of (p− 1)-chains, which is symmetric
to the effect of a column addition.

row now represents the sum of the k-th and the l-th (p − 1)-simplices, or the
sum of whatever the two columns represented before the operation. Although
the (p − 1)- and p-chains represented by the rows and columns change as we
perform row and column operations, they always represent bases of the two
chain groups.

Smith normal form. Using row and column operations we can reduce the
p-th boundary matrix to Smith normal form. For modulo 2 arithmetic this
means an initial segment of the diagonal is 1 and everything else is 0, as in
Figure IV.9. Recall that np = rankCp is the number of columns of the p-th
boundary matrix. Let np = zp = bp−1 such that the leftmost bp−1 columns
have ones in the diagonal and the rightmost zp columns are zero. The former
represent p-chains whose non-zero boundaries generate the group of (p − 1)-
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Figure IV.9: The entries in the shaded, initial portion of the diagonal are all 1 and
all other entries are 0.

boundaries. The latter represent p-cycles that generate Zp. Once we have all
boundary matrices in normal form, we can extract the ranks of the boundary
and cycle groups and get the Betti numbers,

βp = rankZp − rankBp

for p ≥ 0. It is obvious now but useful to remember that computing βp requires
the ranks of two boundary matrices, not just one.

To reduce ∂p we proceed similar to Gaussian elimination for solving a system
of linear equations. In at most two exchange operations we move a 1 to the
upper left position, and with at most np−1−1 row and np−1 column additions
we zero out the rest of the first row and first column. We then recurse for the
submatrix obtained by removing the first row and first column. Let x be the
row and column number of the upper left element of the submatrix we consider.
Initially, x = 1.

void Reduce(x)
if ∃k ≥ x, l ≥ x with ∂p[k, l] = 1 then

exchange rows x and k; exchange columns x and l;
for i = x+ 1 to np−1 do

if ∂p[i, x] = 1 then add row x to row i endif
endfor;
for i = x+ 1 to np do

if ∂p[x, j] = 1 then add column x to column j endif
endfor;
Reduce(x+ 1)

endif.

We have at most n2
p−1 row operations and at most n2

p column operations. The
total amount of time is therefore at most some constant times np−1np(np−1 +
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np). In summary, we reduce the boundary matrices in time at most cubic in
the number of simplices in K. From the reduced matrices we readily get the
Betti numbers.

Examples. As a first example consider the edge skeleton of the tetrahedron.
The only non-trivial boundary matrix is ∂1. We use row and column operations
to reduce ∂1 to Smith normal form, as shown in Figure IV.10. We conclude that
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Figure IV.10: From left to right: the edge skeleton of the tetrahedron, its first
boundary matrix, the reduced boundary matrix with rankB0 = 3 non-zero rows
and rankZ1 = 3 zero columns.

the edge skeleton has β0 = rankZ0 − rankB0 = 4 − 3 = 1 and β1 = rankZ1 −
rankB1 = 3 − 0 = 3. All other Betti numbers are zero. If we add the four
triangles to the complex we get another boundary matrix to reduce, as shown
in Figure IV.11. The new matrix does not affect dimension zero so β0 = 1, as
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Figure IV.11: The original boundary matrix, ∂2, on the left and its reduced form
with rankB1 = 3 non-zero rows and rankZ2 = 1 zero column on the right.

before. For dimensions one and two we have β1 = rankZ1−rankB1 = 3−3 = 0
and β2 = rankZ2 − rankB2 = 1 − 0 = 1.
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Reduced homology. Homology groups have been defined for triangulated
spaces, which are therefore necessarily closed. To extend them to other spaces,
we introduce homology groups for pairs of closed spaces. Let K be a simplicial
complex and K0 and subcomplex of K. The relative chain groups are quotients
of the chain groups of K and of K0, Cp(K,K0) = Cp(K)/Cp(K0). Taking this
quotient partitions Cp(K) into cosets of p-chains that possibly differ in the
p-simplices in K0 but not in the ones in K − K0. The boundary operator is
induced by the one for K,

∂p : Cp(K,K0) → Cp−1(K,K0).

As before, ∂ commutes with addition and ∂ ◦ ∂ = 0. We thus define relative
cycle groups, relative boundary groups, and relative homology groups as before,

Zp(K,K0) = ker (∂p : Cp(K,K0) → Cp−1(K,K0));

Bp(K,K0) = im (∂p+1 : Cp+1(K,K0) → Cp(K,K0));

Hp(K,K0) = Zp(K,K0)/Bp(K,K0).

Let c+ Cp(K0) be a relative p-chain. It is a relative p-cycle iff ∂c is carried by
K0. Furthermore, it is a relative p-boundary is there is a (p+ 1)-chain d of K
such that c− ∂d is carried by K0; see Figure IV.12.

K K 0

Figure IV.12: The two paths are neither boundaries nor cycles in K but they are
both relative cycles and one is a relative boundary in (K, K0).

Excision. By construction, relative homology depends only on the part of
K outside K0 and ignores the part inside K0. Hence we can remove simplices
from both complexes without changing the homology. To make this precise let
L be the smallest subcomplex of K that contains K − K0 and define L0 =
L− (K −K0). Since L contains K −K0 we have L− L0 = K −K0.
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Excision Theorem. Let K0 ⊆ K and L0 ⊆ L be as defined above.
Then the two sequences of relative homology groups are pairwise isomorphic,
Hp(K,K0) ' Hp(L,L0) for all p.

Instead of giving an algebraic proof of this fairly obvious fact, let us take a
look at the algorithm for computing ranks of relative homology groups. Start-
ing with the boundary matrices for K, we delete all rows and columns that
correspond to simplices in K0. Clearly, if we start with the boundary matrices
for L and remove all rows and columns that correspond to simplices in L0 we
end up with the same matrices, namely the ones that records incidences be-
tween simplices in K −K0 = L−L0. Reducing these matrices gives the ranks
of the boundary, cycle, and homology groups which are therefore the same for
(K,K0) and (L,L0).

Bibliographic notes. We have introduced homology groups for modulo 2
arithmetic, but the matrix reduction algorithm suggests that other, more elab-
orate coefficient groups can also be used. Texts in algebraic topology focus on
using integer coefficients, but this complicates matters significantly: we need
to orient simplices so that negative multiples are defined, homology groups
develop torsion that is not measured by their ranks, the reduction algorithm
needs to compute common factors of numbers; see e.g. Munkres [1].

[1] J. R. Munkres. Elements of Algebraic Topology. Addison-Wesley, Redwood City,
California, 1984.


