
104 V Morse Functions

V.1 Generic Smooth Functions

Many, perhaps most questions in the sciences and engineering can be posed
in terms of real-valued functions. General such functions are a nightmare
and continuous functions are not much better. Even smooth functions can
be exceedingly complicated but when they are restricted to being generic they
become intelligible.

The upright torus. We start with an example that foreshadows many of the
results on generic smooth functions in an intuitive manner. Let M be the two-
dimensional torus and f(x) the height of the point x ∈ M above a horizontal
plane on which the torus rests, as in Figure V.1. We call f : M → R a height
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Figure V.1: The vertical height function on the torus with critical points u, v, w, z

and level sets between their height values.

function. Each real number a has a preimage, f−1(a), which we refer to as a
level set. It consists of all points x ∈ M with height a. Accordingly, the sublevel
set consists of all points with height at most a,

Ma = f−1(−∞, a] = {x ∈ M | f(x) ≤ a}.

We are interested in the evolution of the sublevel set as we increase the thresh-
old. Critical events occur when a passes the height values of the points u, v, w, z
in Figure V.1. For a < f(u) the sublevel set is empty. For f(u) < a < f(v) it
is a disk, which has the homotopy type of a point. For f(v) < a < f(w) the
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sublevel set is a cylinder. It has the homotopy type of a circle which we imag-
ine is obtained by gluing the two ends of an interval to the disk which is then
shrunk to a point. For f(w) < a < f(z) the sublevel set is a capped torus. It
has the homotopy type of a figure-8 obtained by gluing the two ends of another
interval to the cylinder which is then shrunk to a circle. Finally, for f(z) < a
we have the complete torus. It is obtained by gluing a disk to the capped torus.
Figure V.2 illustrates the three intermediate stages of the evolution. We need
background in differential topology to explain in what sense this evolution of
the sublevel set is representative of the general situation.

Figure V.2: Going from a disk to a cylinder is homotopically the same as attaching
a 1-handle. Similarly, going from the cylinder to the capped torus is homotopically
the same as attaching another 1-handle.

Smooth functions. Let M be a smooth d-manifold, that is, M has an atlas
of coordinate charts each diffeomorphic to an open ball in Rd. We recall that a
diffeomorphism is a homeomorphism that is smooth in both directions. Denote
the tangent space at a point x ∈ M by TMx. It is the d-dimensional vector
space consisting of all tangent vectors of M at x. A smooth mapping to another
smooth manifold, f : M → N, induces a linear map between the tangent
spaces, the derivative Dfx : TMx → TNf(x). We are primarily interested
in real-valued functions for which N = R. Accordingly, we have linear maps
Dfx : TM → TRf(x). The tangent space at a point of the real line is again a
real line, so this is just a fancy way of saying that the derivatives are real-valued
linear maps on the tangent spaces. Being linear, the image of such a map is
either the entire line or just zero. We call x ∈ M a regular point of f if Dfx
is surjective and we call x a critical point of f if Dfx is the zero map. If we
have a local coordinate system (x1, x2, . . . , xd) in a neighborhood of x then x
is critical iff all its partial derivatives vanish,

∂f

∂x1
(x) =

∂f

∂x2
(x) = . . . =

∂f

∂xd
(x) = 0.

The image of a critical point, f(x), is called a critical value of f . We use second
derivatives to further distinguish between different types of critical points. The
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Hessian of f at the point x is the matrix of second derivatives,

H(x) =
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A critical point x is non-degenerate if the Hessian is non-singular, that is,
detH(x) 6= 0. The points u, v, w, z in Figure V.1 are examples of non-
degenerate critical points. Examples of degenerate critical points are x1 = 0
of the function f : R → R defined by f(x1) = x3

1 and (x1, x2) = (0, 0) of
f : R2 → R defined by f(x1, x2) = x3

1 −3x1x
2
2. The degenerate critical point in

that latter example is often referred to as a monkey saddle. Indeed, the graph
of the function in a neighborhood goes up and down three times, providing
convenient rest for the two legs as well as the tail of the monkey.

Morse functions. At a critical point all partial derivatives vanish. A lo-
cal Taylor expansion has therefore no linear terms. If the critical point is
non-degenerate then the behavior of the function in a small neighborhood is
dominated by the quadratic terms. Even more, we can find local coordinates
such that there are no higher-order terms.

Morse Lemma. Let u be a non-degenerate critical point of f : M → R.
There are local coordinates with u = (0, 0, . . . , 0) such that

f(x) = f(u) − x2
1 − . . .− x2

p + x2
p+1 + . . .+ x2

d

for every point x = (x1, x2, . . . , xd) in a small neighborhood of u.

The number of minus signs in the quadratic polynomial is the index of the
critical point, index(u) = p. The index classifies the non-degenerate critical
points into d + 1 basic types. For a 2-manifold we have three types, minima
with index 0, saddles with index 1, and maxima with index 2. Examples of
all three types can be seen in Figure V.1. In Figure V.3 we display them by
showing the local evolution of the sublevel set. A consequence of the Morse
Lemma is that non-degenerate critical points are isolated. This implies that a
Morse function on a compact manifold has at most a finite number of critical
points. To contrast this with a function that is not Morse take the height
function of a torus, similar to Figure V.1 but placing the torus sideways, the
way it would naturally rest under the influence of gravity. This height function
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Figure V.3: From left to right: the local pictures of a minimum, a saddle, a maximum.
Imagine looking from above with the shading getting darker as the function shrinks
away from the viewpoint.

has an entire circle of minima and another circle of maxima. All these critical
points are degenerate and their index is not defined.

Definition. A smooth function on a manifold, f : M → R, is a Morse
function if (i) all critical points are non-degenerate, and (ii) the critical points
have distinct function values.

Sometimes the second condition is dropped but in this book we will always
require both. For a geometrically perfect torus the height function satisfies
condition (i) for all but two directions, the ones parallel to the symmetry axis
of the torus. Condition (ii) is violated for another two circles of directions along
which the two saddles have the same height. The height function of S2 is a
Morse function for all directions. The distance from a point is a Morse function
for almost all points. Exceptions for the torus are points on the symmetry axis
and on the center circle, but there are others. The only exception for the
2-sphere is the center.

Gradient vector field. A vector field on a manifold is a function X : M →
TM that maps every point x ∈ M to a vector X(x) in the tangent space of M

at x. Given f : M → R and X we denote the directional derivative of f along
the vector field by X [f ]. It maps every point x ∈ M to the derivative of f at x
in the direction X(x). A particularly useful vector field is the one that points
in the direction of steepest increase. To define it we need to measure length,
which we do by introducing a Riemannian metric, that is, a smoothly varying
inner product defined on the tangent spaces. For example, if M is smoothly
embedded in some Euclidean space then the tangent spaces are linear subspaces
of the same Euclidean space and we can borrow the metric. Given a smooth
manifold M, a Riemannian metric on M and a smooth function f : M → R,
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we define the gradient of f as the vector field ∇f : M → TM characterized
by 〈X(x),∇f(x)〉 = X [f ] for every vector field X . Assuming local coordinates
with orthonormal unit vectors xi, the gradient at the point x is

∇f(x) =

[

∂f

∂x1
(x),

∂f

∂x2
(x), . . . ,

∂f

∂xd
(x)

]T

.

We use the gradient to introduce a 1-parameter group of diffeomorphisms ϕ :
R × M → M. There are two characteristic properties of this group. First, the
map ϕt : M → M defined by ϕt(x) = ϕ(t, x) is a diffeomorphism of M to itself
for each t ∈ R, and second, ϕt+t0 = ϕt ◦ ϕt0 for all t, t0 ∈ R. Such a group
defines a vector field by differentiation and we require that this vector field be
the gradient vector field, modified by taking one over the original length:

lim
ε→0

f(ϕε(x)) − f(x)

ε
=

∇f(x)

‖∇f(x)‖2 [f ].

This group of diffeomorphisms follows the evolution of the sublevel set and can
be used to prove that there are no topological changes that happen between
contiguous critical values. Specifically, let f : M → R be smooth and a < b
such that f−1[a, b] is compact and contains no critical points of f . Then Ma is
diffeomorphic to Mb.

Attaching handles. The situation is different when we consider regular val-
ues a < b such that f−1[a, b] is compact but contains one critical point of
f . Let this critical point be u and its index be p. In this case, Mb has the
homotopy type of Ma with a p-handle attached. To explain what this means
we recall that Bp is the p-dimensional unit ball and Sp−1 is its boundary. Let
g : Sp−1 → bd Ma be a continuous map. To attach the handle to Ma we first
take the topological sum (disjoint union) of Ma and Bp and then identify each
point x ∈ S

p−1 with its image g(x) ∈ bd Ma. The only case that is a bit differ-
ent is p = 0. Then S−1 is empty and attaching the 0-handle just means adding
a disjoint point.

We illustrate this construction for a 3-manifold M. There are four types of
critical points, namely minima with index 0, saddles with index 1 or 2, and
maxima with index 3. The two types of saddles deserve some attention. To
illustrate the local evolution of the sublevel set we draw spheres around them
and shade the portion that belongs to the sublevel set, as in Figure V.4. The
level set that passes through the saddle forms locally a double-cone with the
apex at the saddle. This is the same for both types, the only difference being the
side on which the sublevel set resides. For the index 1 saddle we imagine a two
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Figure V.4: The double-cone neighborhood of the index 1 saddle on the left and of
the index 2 saddle on the right. The volume occupied by the sublevel set is shaded.

sheet hyperboloid approaching from two sides until the two sheets meet at the
saddle. Thereafter the sublevel set thickens around the saddle as its boundary
moves out as a one sheet hyperboloid (an hour glass). Homotopically, this
evolution is the same as attaching a 1-handle (an interval) connecting the two
sheets. For the index 2 saddle the sequence of events is reversed. Specifically, a
one sheet hyperboloid approaches along a circle of directions until it reaches the
saddle. Thereafter the sublevel set thickens around the saddle as its boundary
moves out as two sheets of a hyperboloid. Homotopically, this evolution is the
same as attaching a 2-handle (a disk) closing the tunnel formed by the one
sheet hyperboloid.

Bibliographic notes. Morse theory developed first in infinite dimensions,
as part of the calculus of variations, see Morse [4]. The classic source on the
subject for finite-dimensional manifolds is the text by Milnor [3], but see also
Matsumoto [2] and Banyaga and Hurtubis [1].
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