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V.3 Piecewise Linear Functions

In practical situations we rarely (or perhaps never) have smooth functions.
Instead, we use other functions to approximate smooth functions. In this sec-
tion, we use insights gained into the smooth case as a guide in our attempt to
understand the piecewise linear case.

Lower star filtration. Let K be a simplicial complex with real values speci-
fied at all vertices. Using linear extension over the simplices, we obtain a piece-
wise linear (PL) function f : K → R. It is defined by f(x) =

∑

i bi(x)f(ui),
where the ui are the vertices of K and the bi(x) are the barycentric coordinates
of x; see Section III.1. To emphasize that f is linear on every simplex, we pre-
fer the above notation over the more accurate f : ||K || → R. It is convenient
to assume that f is generic by which we mean that the vertices have distinct
function values. We can then order the vertices by increasing function value
as f(u1) < f(u2) < . . . < f(un). For each 0 ≤ i ≤ n, we let Ki be the full
subcomplex defined by the first i vertices. In other words, a simplex σ ∈ K
belongs to Ki iff each vertex uj of σ satisfies j ≤ i. Recall that the star of
a vertex ui is the set of cofaces of ui in K. The lower star is the subset of
simplices for which ui is the vertex with maximum function value,

St−ui = {σ ∈ Stui | x ∈ σ ⇒ f(x) ≤ f(ui)}.

By assumption of genericity, each simplex has a unique maximum vertex and
thus belongs to a unique lower star. It follows that the lower stars partition
K. Furthermore, Ki is the union of the first i lower stars. This motivates us to
call the nested sequence of complexes ∅ = K0 ⊂ K1 ⊂ . . . ⊂ Kn = K the lower
star filtration of f . It will be useful to notice that the Ki are representative
of the continuous family of sublevel sets. Specifically, for f(ui) ≤ t < f(ui+1)

t

Figure V.8: We retract ||K ||t to Ki by shrinking the line segments decomposing the
partial simplices from the top downward.
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the sublevel set ||K ||t = f−1(−∞, t] has the same homotopy type as Ki. To
prove this consider each simplex with at least one vertex in Ki and at least on
in K −Ki. Write this simplex as a union of line segments connecting points
on the maximal face in Ki with points on the maximal face in K − Ki, as
shown in Figure V.8. The sublevel set ||K ||t contains only a fraction of each
such line segment, namely the portion from the lower endpoint x in ||Ki || to
the upper endpoint y with f(y) = t. To get a deformation retraction we let
yλ = λx+(1−λ)y be the upper endpoint at time λ. Going from time λ = 0 to
λ = 1 proves that the sublevel set for t and Ki have the same homotopy type.

PL critical points. Let us study the change from one complex to the next
in the lower star filtration in more detail. Recall that the link of a vertex is the
set of simplices in the closed star that do not belong to the star. Similarly, the
lower link is the collection of simplices in the lower star that do not belong to
the lower star. Equivalently, it is the collection of simplices in the link whose
vertices have smaller function value than ui,

Lk−ui = {σ ∈ Lkui | x ∈ σ ⇒ f(x) < f(ui)}.

When we go from Ki−1 to Ki we attach the closed lower star of ui, gluing it
along the lower link to the complex Ki−1. Assume now that K triangulates a
d-manifold. This restricts the possibilities dramatically since every vertex star
is an open d-ball and every vertex link is a (d− 1)-sphere. A few examples of
lower stars and lower links in a 2-manifold are shown in Figure V.9. We classify

Figure V.9: From left to right: the lower star and lower link of a regular vertex, a
minimum, a saddle, and a maximum.

the vertices using the reduced Betti numbers of their lower links. Recall that
β̃0 is one less than β0, the number of components. The only exception to this
rule is the empty lower link for which we have β̃0 = β0 = 0 and β̃−1 = 1.
Table V.1 gives the reduced Betti numbers of the lower links in Figure V.9.
We call ui a PL regular vertex if its lower link is non-empty but homologically
trivial and we call ui a simple PL critical vertex of index p if its lower link has
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β̃−1 β̃0 β̃1

regular 0 0 0
minimum 1 0 0
saddle 0 1 0
maximum 0 0 1

Table V.1: Classification of the vertices in a PL function on a 2-manifold.

the reduced homology of the (p− 1)-sphere. In other words, the only non-zero
reduced Betti number of a simple PL critical vertex of index p is β̃p−1 = 1.

Definition. A piecewise linear function f : K → R on a manifold is a PL
Morse function if (i) each vertex is either PL regular or simple PL critical and
(ii) the function values of the vertices are distinct.

Unfolding. In contrast to the smooth case, PL Morse functions are not dense
among the class of all PL functions. Equivalently, a PL function on a manifold
may require a substantial perturbation before it becomes PL Morse. As an
example consider the piecewise linear version of a monkey saddle displayed in
Figure V.10. It is therefore not reasonable to assume a PL Morse function

unfold

Figure V.10: Left: a PL monkey saddle of a height function. The areas of points
lower than the center vertex are shaded. Right: the unfolding of the PL monkey
saddle into two simple saddles.

as input, but we can sometimes alter the triangulation locally to make it into
a PL Morse function. In the 2-manifold case, a k-fold saddle is defined by
β̃0 = k. We can split it into k simple saddles by introducing k− 1 new vertices
and assigning appropriate function values close to that of the original, k-fold
saddle; see Figure V.10 for the case k = 2. It is less clear how to unfold
possibly complicated PL critical points for higher-dimensional manifolds; see
Section IX.8.
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Alternating sum of indices. Let K be a triangulation of a d-manifold and
f : K → R a PL Morse function. It is not difficult to prove that the alternating
sum of the simple PL critical points gives the Euler characteristic,

χ(K) =
∑

u

(−1)index(u).

Since it is easy and instructive, we give an inductive proof of this equation.
To go from Ki−1 to Ki, we add the lower star of ui. By the Euler-Poincaré
Theorem, the Euler characteristic of the lower link L = Lk−ui is

χ(L) = 1 +
∑

p≥0

(−1)p−1β̃p−1(L),

which is 1 if ui is PL regular and 1 + (−1)index(ui)−1 if ui is PL critical. Each
j-simplex in the lower star corresponds to a (j − 1)-simplex in the lower link,
except for the vertex ui itself. Adding the lower star to the complex thus
increases the Euler characteristic by 1 − χ(L), which is zero for a PL regular
point and (−1)index(ui) for a simple PL critical point. The claimed equation
follows.

Mayer-Vietoris sequences. We prepare the proof of the complete set of
Morse inequalities for PL Morse functions by introducing the Mayer-Vietoris
sequence of a covering of a simplicial complex by two subcomplexes. Let K =
K ′ ∪ S be the covering and note that the intersection of the two subcomplexes,
L = K ′ ∩ S, is also a subcomplex of K. The corresponding Mayer-Vietoris
sequence is

. . .→ H̃p+1(K)
ϕ→ H̃p(L)

ψ→ H̃p(K
′) ⊕ H̃p(S) → H̃p(K) → H̃p−1(L) → . . .

It is exact which means that the image of every homomorphism is equal to
the kernel of the next homomorphism in the sequence. This is not unlike the
situation in a chain complex, except there the image can be smaller than the
kernel and homology is a measure of that difference. We are interested in the
reduced p-th homology group of L, letting ϕ and ψ be the maps that connect it
to its predecessor and successor groups in the sequence. Let kp be the rank of
the kernel of ψ. Similarly, let kp the rank of the cokernel of ϕ, that is, the rank
of the quotient H̃p(L)/imϕ, which by exactness is β̃p(L)−kp. As illustrated in
Figure V.11, exactness also implies that the rank of the image of ψ is kp and
the rank of H̃p+1(K)/kerϕ is kp.
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Figure V.11: A portion of the Mayer-Vietoris sequence. By exactness, the rank of
the kernel of every map equals the rank of the cokernel of the preceding map.

PL Morse inequalities. We are now ready to state and prove the PL ver-
sions of the weak and strong Morse inequalities.

PL Morse Inequalities. Let K be a triangulation of a manifold of dimen-
sion d and f : K → R a PL Morse function. Writing cp for the number of index
p PL critical points of f we have

(i) weak: cp ≥ βp(K) for all p;

(ii) strong:
∑j

p=0(−1)j−pcp ≥
∑j

p=0(−1)j−pβp(K) for all j.

Proof. We prove the inequalities inductively, for each Ki. Note that Ki is the
union of Ki−1 and the closed lower star of ui. We use the corresponding Mayer-
Vietoris sequence, obtained by setting K = Ki, K

′ = Ki−1, L = Lk−ui, and
therefore S = L ∪ St−ui. Since S is the cone over a complex it is homologically
trivial. Let ϕ and ψ be the maps as defined above, kp the rank of the kernel of
ψ, and kp the rank of the cokernel of ϕ; refer to Figure V.11. Since S is trivial
we have

rank H̃p(Ki) = rank H̃p(Ki−1) − kp + kp−1.

By definition of simple PL critical point we have β̃p−1 = kp−1 + kp−1 for all
p. If ui is PL regular then kp−1 = kp−1 = 0 for all p and the ranks of the
homology groups do not change. Similarly, none of the cp changes so all Morse

inequalities remain valid. If index(ui) = p and kp−1 = 1 then both cp and β̃p go
up by one which maintains the validity of all Morse inequalities. On the other
hand, if index(ui) = p and kp−1 = 1 then cp goes up and β̃p−1 goes down. Since
the two have opposite signs this maintains the validity of all Morse inequalities
that contain both. The only strong Morse inequality that contains only one of
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the two terms is the one for j = p − 1. It contains the reduced Betti number
with a plus sign so this inequality is also preserved.

We note that the strong Morse inequality for j = d is actually an equality,
namely the one we have proved above, before introducing the Mayer-Vietoris
sequence. It contains both changing terms, in all cases, so there is never a
chance that the two sides become different.

Bibliographic notes. Piecewise linear functions on polyhedral manifolds
have already been studied by Banchoff [1]. He defines the index of a vertex as
the Euler characteristic of its lower link. This is coarser than our definition
but leads to similar results, in particular a short and elementary proof that the
Euler characteristic is equal to the alternating sum of critical points. However,
it does not lend itself to a natural generalization of the other Morse inequalities
to non-Morse PL functions. Our classification of PL critical points in terms of
reduced Betti numbers can be found in [3], where it is used to compute the PL
analog of the Morse-Smale complex for 2-manifolds. There are industrial ap-
plications of these ideas to surface design and segmentation based on curvature
approximating and other shape-sensitive functions in R3 [2].
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