
122 V Morse Functions

V.4 Reeb Graphs

The structure of a continuous function can sometimes be made explicit by
plotting the evolution of the components of the level set. This leads to the
concept of the Reeb graph of the function. It has applications in medical
imaging and other areas of science and engineering.

Iso-surface extraction. The practical motivation for studying Reeb graphs
is the extraction of iso-surfaces for three-dimensional density data. In topolog-
ical lingo, the density data is a continuous function, f : [0, 1]3 → R, and an
iso-surface is a level set, f−1(t). If f is smooth and t is a regular value then the
level set is a 2-manifold, possibly with boundary. Similarly, if f is generic PL
and t is not the value of a PL critical point then the level set is a 2-manifold,
again possibly with boundary. Figure V.12 illustrates this fact for a generic
PL function on the unit square. Assuming we enter a triangle at a boundary

Figure V.12: The level set of a generic PL function on a triangulation of the unit
square. The superlevel set is white and the sublevel set is shaded.

point x with f(x) = t, there is a unique other boundary point y with f(y) = t
where we exit the triangle. We draw the line segment from x to y as part of
the level set and repeat the construction by entering the next triangle at y.
The procedure is similar for a PL function on the unit cube except that we use
a graph search algorithm to collect the triangular and quadrangular surface
pieces we get for the tetrahedra.

Given a first point on the level set, it easy to trace out the component that
contains it. But to be sure we did not not miss any of the other components
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it seems we need to check every edge of the triangulation. The desire to avoid
this costly computation leads to the introduction of the contour tree, which is
a data structure that can be queried for initial points on components of the
level set without checking the entire triangulation. It is based on the concept
of a Reeb graph, which we discuss next.

Quotient topology and space. We begin by introducing a basic construc-
tion of topological spaces. Suppose we have an equivalence relation, ∼, defined
on a topological space X. Let X∼ be the set of equivalence classes and let
ψ : X → X∼ map each point x to its equivalence class.

Definition. The quotient topology of X∼ consists of all subsets U ⊆ X∼
whose preimages, ψ−1(U), are open in X. The set X∼ together with the quotient
topology is the quotient space defined by ∼.

We have seen examples of this construction before, one being the torus obtained
by gluing opposite sides of a square. In this case, the equivalence classes are
individual points in the interior, pairs of points on the edges, and the quadruple
of points at the corners of the square. We construct another example.

Definition. Let f : X → R be continuous and call a component of a level
set a contour. Two points x, y ∈ X equivalent if they belong to the same
component of f−1(t) with t = f(x) = f(y). The Reeb graph of f , denoted as
R(f) = X∼, is the quotient space defined by this equivalence relation.

By construction, the Reeb graph has a point for each contour and the connec-
tion is provided by the map ψ : X → R(f). Letting π : R(f) → R be defined
such that f(x) = π(ψ(x)) we can construct the level set by going backward,
from the real line to the Reeb graph to the topological space. Given t ∈ R we
get π−1(t), a collection of points in R(f), and ψ−1(π−1(t)), the corresponding
collection of contours that make up the level set defined by t.

Besides using the Reeb graph as a data structure to accelerate the extraction
of level sets, we may hope to learn something about the function or the topo-
logical space on which the function is defined. Even though the Reeb graph
loses a lot of the original topological structure there are some things that can
be said. We have a continuous surjection, ψ : X → R(f), which maps compo-
nents to components. Furthermore, a loop in X that maps to a loop in R(f)
is not contractible and two loops in X that map to different loops in R(f) are
not homologous. It follows that the number of components is preserved and
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the number of loops cannot increase,

β0(R(f)) = β0(X);

β1(R(f)) ≤ β1(X).

Hence, if X is connected and simply connected then the Reeb graph is a tree,
independent of the function f .

Reeb graphs of Morse functions. More can be said if X = M is a manifold
of dimension d ≥ 2 and f : M → R is a Morse function, like in Figure V.13.
Recall that each point u ∈ R(f) is the image of a contour in M. We call u a

Figure V.13: Level sets of the 2-manifold map to points on the real line and compo-
nents of the level sets map to points of the Reeb graph.

node of the Reeb graph if ψ−1(u) contains a critical point or, equivalently, if u
is the image of a critical point under ψ. By definition of Morse function, the
critical points have distinct function values, which implies a bijection between
the critical points of f and the nodes of R(f). The rest of the Reeb graph is
partitioned into arcs connecting the nodes. A minimum starts a contour and
therefore corresponds to a degree 1 node. An index 1 saddle that merges to
contours into one corresponds to a degree 3 node. Symmetrically, a maximum
corresponds to a degree 1 node and an index d− 1 saddle that splits a contour
into two corresponds to a degree 3 node. All other critical points correspond
to nodes of degree 2.
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We note that the Reeb graph is a one-dimensional topological space with
points on arcs being individually meaningful objects. There is no preferred
way to draw the graph in the plane or in space.

Orientable 2-manifolds. If d = 2 and M is orientable then every saddle
either merges two contours into one or it splits a contour into two. Either way
it corresponds to a degree 3 node in the Reeb graph. We use this to pin down
the number of loops in the Reeb graph. Let ni be the number of nodes with
degree i. For orientable 2-manifolds only n1 and n3 are non-zero. The number
of arcs is e = (n1 + 3n3)/2 and the number of loops is 1 + e− (n1 + n3).

Loop Lemma A. The Reeb graph of a Morse function on a connected, ori-
entable 2-manifold of genus g has g loops.

Proof. Suppose first that the original Reeb graph has no loop. It is a tree
with n1 = n3 + 2 degree 1 nodes. Writing ci for the number of critical points
of index i we have n1 = c0 + c2 and n3 = c1. The last strong Morse inequality
implies χ = c0 − c1 + c2 = n1 − n3 = 2, which is the Euler characteristic of the
sphere.

Suppose second that the original Reeb graph has at least one loop. We col-
lapse degree 1 nodes and merge arcs across degree 2 nodes which get eliminated
in the process. For example, the Reeb graph in Figure V.13 simplifies this way
to two degree 3 nodes connected to each other by three arcs. Both operations
preserve the homotopy type and therefore the number of loops. Let m3 be the
number of remaining degree 3 nodes and note that it is even because 3m3 is
twice the number of remaining arcs. Using the Euler-Poincaré Theorem for
graphs we get χ = m3 − 3m3/2 = β0 − β1. The graph is connected which im-
plies that the number of loops is β1 = m3/2 + 1. We have c1 degree 3 nodes in
the original Reeb graph and for each minimum and maximum we collapse one
degree 1 node removing a degree 3 node in the process. Using the last strong
Morse inequality we get m3 = c1 − (c0 + c2) = −χ = 2g − 2. The number of
loops is therefore β1 = (2g − 2)/2 + 1 = g, as claimed.

Non-orientable 2-manifolds. The situation for non-orientable 2-manifolds
is more complicated as the number of loops in the Reeb graph is not longer
independent of the function. To determine tight upper and lower bounds, we
make use of the doubling operation that turns a non-orientable 2-manifold, N,
into an orientable 2-manifold, M. In the process every vertex, edge, and triangle
of a triangulation of N gets duplicated implying χ(M) = 2χ(N). It follows that
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the doubling process decreases the genus by 1. Table V.2 lists the first few
cases of this correspondence along with the genus and the Euler characteristic
of each manifold. Let now f : N → R be a Morse function. In contrast to

χ(N) g(N) N M g(M) χ(M)

1 1 P
2

S
2 0 2

0 2 P
2#P

2
T

2 1 0
−1 3 P

2#P
2#P T

2#T
2 2 −2

. . . . . . . . . . . . . . . . . .

Table V.2: Doubling turns the non-orientable 2-manifold on the left into the orientable
2-manifold on the right.

the orientable case, R(f) can also have nodes of degree 2. They correspond to
saddles whose contours reverse orientation; we have to traverse them twice to
return to the same point with the same orientation. The existence of degree
2 nodes complicates matters and we no longer have a predictable number of
loops.

Loop Lemma B. The Reeb graph of a Morse function on a connected, non-
orientable 2-manifold of genus g has at most g/2 loops.

Proof. Let f : N → R be the Morse function on the non-orientable 2-manifold
and f0 : M → R the function obtained by doubling. Contours of f that do
not contain critical points lift to two contours of f0. It follows that R(f0) has
twice the number of arcs of R(f). Similarly, a contour that maps to a degree 1
or 3 node in R(f) lifts to two disjoint copies giving rise to two nodes in R(f0).
Finally, a contour that maps to a degree 2 node in R(f) lifts to a single contour,
giving rise to a single node incident to four arcs in R(f0).

Letting e be the number of arcs and ni the number of degree i nodes in R(f),
we have 2e arcs and 2n1 + n2 + 2n3 nodes in R(f0). The number of loops in
R(f) is β1(R(f)) = 1 + e − n1 − n2 − n3. The number of loops in R(f0) is
therefore

β1(R(f0)) = 1 + 2e− 2n1 − n2 − 2n3

= 2β1(R(f)) − 1 + n2.

The critical points of f0 are non-degenerate but they share function values in
pairs. A small perturbation that does not affect the structure of the Reeb graph
suffices to turn f0 into a Morse function. By the Loop Lemma A, the number
of loops in R(f0) is g− 1 and we get β1(R(f)) = (g− n2)/2. Since n2 ≥ 0 this
implies the claimed upper bound.
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The number of saddles with orientation reversing contours can be anywhere
between zero and g which implies that the upper bound is tight and any smaller
non-negative number of loops can be achieved.

Bibliographic notes. The most common method for extracting iso-surfaces
from density data is the marching cube algorithm due to Lorensen and Cline [3].
As the name suggests, it works with a cube complex rather than a triangulation.
The portion of the iso-surface within a single cube can be complicated and the
implementation of the algorithm requires some care. The idea of speeding up
the iso-surface extraction with a contour tree is more recent [5]. This tree is
really the Reeb graph of a PL function on a cube, which has no loops. The
definition of the Reeb graph itself is much older [4]. The analysis of the number
of loops is taken from a relatively recent source [2]. This paper also gives an
algorithm that constructs the Reeb graph of a PL function on a triangulated 2-
manifold in time O(n logn), where n is the number of edges in the triangulation.
If there are no loops then the running time can be reduced to O(nα(n)) [1].
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222 (1946), 847–849.

[5] M. van Kreveld, R. van Oostrum, C. L. Bajaj, V. Pascucci and D. R.
Schikore. Contour trees and small seed sets for isosurface traversal. In “Proc.
13th Ann. Sympos. Comput. Geom., 1997”, 212–220.


