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VI.1 Persistent Homology

A main purpose of persistent homology is the measurement of the scale or
resolution of a topological feature. There are two ingredients, one geometric,
assigning a function to a space, the other algebraic, turning the function into
measurements. The measurements make sense only if the function does. In this
section, we focus on the second step and simplify the scenario by substituting
an ordering of the simplices for the function.

Filtrations. Let K be a simplicial complex. A filtration is a nested sequence
of subcomplexes,

∅ = K0 ⊂ K1 ⊂ . . . ⊂ Kn = K.

We may think of the filtration as a description of how to construct K by
adding chunks at a time. We have seen an example is Section III.3 where we
constructed the Delaunay complex in a sequences of alpha complexes. More
than in the sequence of complexes, we are interested in their topological evo-
lution expressed by the corresponding sequence of homology groups. Since
Ki−1 ⊂ Ki, the inclusion map defined by f(x) = x induces a homomorphism
between the homology groups, f∗ : Hp(Ki−1) → Hp(Ki). The nested sequence
of complexes thus corresponds to sequences of homology groups connected by
homomorphisms,

0 = Hp(K0) → Hp(K1) → . . .→ Hp(Kn) = Hp(K),

one for each dimension p. The filtration defines a partial ordering on the
simplices with σ ∈ Ki−Ki−1 preceding τ ∈ Kj−Kj−1 if i < j. We can extend
this to a total ordering by deciding on the ordering of the simplices within
each Ki −Ki−1. We do this such that each simplex is preceded by its faces.
Equivalently, we may assume that Ki −Ki−1 consists of a single simplex, σi,
for each i. In other words, the simplices of K are ordered as σ1, σ2, . . . , σn such
that Ki = {σ1, σ2, . . . , σi} for each 0 ≤ i ≤ n.

Incremental algorithm. We consider the problem of updating the Betti
numbers while adding a single simplex to a complex, Ki = Ki−1 ∪ {σi} with
dimσi = p. The addition of σi changes only two boundary matrices, the p-th
and the (p + 1)-st. Since Ki−1 is a complex it contains none of the cofaces of
σi. The additional row in the (p + 1)-st boundary matrix is therefore zero, as
in Figure VI.1. This implies that the ranks of Zp+1 and Bp remain unchanged.
However, the additional column in the p-th boundary matrix is generally non-
zero and we distinguish two cases.
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1. The column is a linear combination of prior columns. We can use row
operations to zero-out the new column. The rank of Zp therefore increases
by one and the rank of Bp−1 stays the same. Hence, βp(Ki) = βp(Ki−1)+1
and all other Betti numbers remain as before.

2. The additional column is not a linear combination of prior columns. We
can use row and column operations to extend the diagonal of ones by
one position. The rank of Zp remains unchanged and the rank of Bp−1

increases by one. Hence, βp−1(Ki) = βp−1(Ki−1) − 1 and all other Betti
numbers remain as before.
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Figure VI.1: Adding a p-simplex adds a column to the p-th and a row to the (p+1)-st
boundary matrices.

The computation of Betti numbers thus reduces to deciding whether a new
p-simplex gives birth to a new p-cycle and thus increases βp or it gives death
to a (p− 1)-cycle (changes it to a (p− 1)-boundary) and thus decreases βp−1.
Calling the former simplices positive and the latter negative, we can express
the idea of persistence as pairing positive with negative simplices and this way
assessing homology classes in terms of their lifetime within a filtration.

Persistent homology groups. Recall that the filtration of complexes de-
fines a sequence of homology groups connected by homomorphisms for each
dimension. We simplify the notation by writing Hip = Hp(Ki) and add the zero
homology group at the end, giving

0 = H
0
p → H

1
p → . . .→ H

n
p → H

n+1
p = 0.

The homomorphisms can be composed giving maps f i,jp : Hip → Hjp. The image

of f i,jp consists of all p-dimensional homology classes that are born at or before
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Ki and die after Kj . The effect of adding the zero group at the end is that
every class eventually dies.

Definition. The dimension p persistent homology groups are the images of
the homomorphisms induced by inclusion, Hi,jp = im f i,jp , for 0 ≤ i ≤ j ≤ n+1.
The corresponding dimension p persistent Betti numbers are the ranks of these
groups, βi,jp = rankHi,jp .

Note that Hi,ip = Hip. The persistent homology groups consist of the homology

classes of Ki that are still alive at Kj or, more formally, H
i,j
p = Z

i
p/(B

j
p ∩ Z

i
p),

where Zip and Bjp are the p-th cycle and boundary groups of Ki and Kj . Cor-
respondingly, the persistent Betti numbers count the independent homology
classes in Ki that are still alive and independent in Kj . Equivalently, they
count the independent homology classes in Kj that are born at or before Ki.
We have such a number for each dimension p and each index pair i ≤ j. To
visualize all these numbers we introduce multiplicities,

µi,jp = (βi,j−1
p − βi,jp ) − (βi−1,j−1

p − βi−1,j
p ),

for all i < j. We have added the parentheses to suggest the following interpre-
tation of this formula. The first difference counts the classes in Kj−1 born at
or before Ki that die entering Kj . The second difference counts the classes in
Kj−1 born at or before Ki−1 that die entering Kj . It follows that µi,jp counts
the p-dimensional homology classes born at Ki that die entering Kj . Since we
add only one simplex at every step, there is at most one class born at Ki. For
trivial reasons, this implies that there is at most one class born at Ki that dies
entering Kj . Hence µi,jp is either zero or one for each choice of p, i, j. We draw
the non-zero multiplicities as points in the plane, getting a collection for each
dimension p.

Definition. The dimension p persistence diagram of the filtration, denoted
as Dgmp, is the set of points (i, j) ∈ R2 with µi,jp = 1.

Since the multiplicities are defined only for i < j all points lie above the
diagonal. For technical reasons which will become clear later, we usually add
the points on the diagonal to the diagram. The definition of µi,jp may be viewed
as an inclusion-exclusion formula for Betti numbers. Specifically, we associate
βk,lp with the point (k, l) and do inclusion-exclusion on the four vertices of a unit
square, as illustrated in Figure VI.2. Adding up the multiplicities represented
by points in an upper, left quadrant cancels all terms other than that at the
corner of the quadrant. This implies that a persistent Betti number can be
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obtained by counting the points above a horizontal and on or to the left of a
vertical line,

βk,lp =
∑

i≤k,l<j

µi,jp .

This is an important property. It says the diagram encodes the entire infor-
mation about persistent homology groups. It also assesses the importance of
a homology class in terms of its lifetime within the filtration. Specifically, for
each point (i, j) in Dgmp we call the vertical distance from the diagonal, j − i,
its persistence.
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Figure VI.2: The number of points in the upper, left quadrant is equal to the persistent
Betti number at its corner.

Matrix reduction. Besides having a compact description in terms of dia-
grams, persistence can also be computed efficiently. The particular algorithm
we use is a version of matrix reduction. Perhaps surprisingly, we can get all the
information with a single reduction. To describe this, let D be the boundary
matrix, combining all dimensions in one. Recalling that σi is the sole simplex
in Ki −Ki−1, we have

D[i, j] =

{

1 if σi < σj and dimσi = dimσj − 1,
0 otherwise.

In words, the rows and columns are ordered like the simplices entering the fil-
tration, and the boundary of a simplex is recorded in its column. The algorithm
uses column operations to reduce D to another 0-1 matrix R. Letting low(j) be
the row index of the last one in column j, we call R reduced if low(j) 6= low(j0)
whenever j 6= j0 specify two non-zero columns. The algorithm reduces D by
adding columns to other columns to their right.
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R = D;
for j = 1 to n do

while there exists j0 < j with low(j0) = low(j) do
add column j0 to column j

endwhile

endfor.

The running time is clearly at most cubic in the number of simplices. In matrix
notation, the algorithm computes the reduced matrix as R = DV , where V is
another 0-1 matrix, as illustrated in Figure VI.3. Since each simplex is preceded
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Figure VI.3: Reducing D expressed as matrix multiplication. White areas are neces-
sarily zero while entries in shaded areas can be either zero or one.

by its proper faces, D is upper triangular. The j-th column of V encodes the
columns in D that add up to give the j-th column in R. Since we only add
from left to right, V is also upper triangular and so is R.

An example. The reduced matrix contains enough information to extract
the Betti numbers of K = Kn but it also encodes all persistent Betti numbers.
We illustrate this with an example. Let K consist of a triangle and its faces.
To get a filtration, we first add the vertices, then the edges, and finally the tri-
angle, numbering them in this order from 1 to 7. The corresponding boundary
matrix is shown as part of the matrix equation in Figure VI.4. We reduce it
as described and get three non-zero columns in R. The lowest one in column
4 of R is in row 2. In words, the vertex 2 gives birth to the 0-cycle that the
edge 4 kills. We have µ2,4

0 = 1 and the corresponding point in the dimension
0 diagram. Similarly, the vertex 3 gives birth to the 0-cycle that the edge 5
kills, giving µ3,5

0 = 1. Adding the edge 6 does not kill anything which we can
see in the matrix since column 6 is zero. It corresponds to a 1-cycle obtained
by adding the prior columns 4, 5, and 6, as indicated in V . The edge 6 thus
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Figure VI.4: Reducing the boundary matrix of the complex consisting of a triangle
and its faces. The boldface 1s in R are the lowest ones in their columns and thus
carry special importance.

gives birth to a 1-cycle that is then killed by the triangle 7, giving µ6,7
1 = 1.

The only simplex whose corresponding row and column both do not contain a
lowest one is vertex 1. It gives birth to a component that does not die until
the artificially added zero group at the last step, giving µ1,8

0 = 1. The lowest
ones in the reduced matrix thus determine both persistent diagrams, which are
shown in see Figure VI.5.
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Figure VI.5: Left: the dimension 0 persistence diagram of the filtration that con-
structs a complex by first adding the three vertices, then the three edges, and finally
the triangle. Right: the dimension 1 diagram of the same filtration.

Bibliographic notes. Filtrations arise in a variety of contexts, including
the parametrized complexes introduced in Chapter III. The incremental al-
gorithm for Betti numbers has originally been designed for three-dimensional
alpha complexes [1]. The concept of persistent homology has been introduced
independently by Robins [4] and by Edelsbrunner, Letscher, and Zomorodian
[2]. The latter paper also gives a sparse matrix implementation of the matrix
reduction algorithm of this section and shows that it is output-sensitive, with
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running time at most some constant times the sum of persistences squared. The
sum is over all points in the diagrams and each persistence is at most n which
gives a cubic worst-case bound. A generalization of the notion of persistence
and the reduction algorithm to coefficient groups that are fields can be found
in [5]. The notion of persistent homology groups is closely related to spectral
sequences, which have been developed about half a century ago, see e.g. [3].
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