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VI.2 Stability

Persistent homology is stable, that is, small perturbations of the input only
cause small perturbations of the output. This property has a number of non-
trivial consequences, some of which will be discussed in Section VI.3. In this
section, we study how changing the filtration affects the corresponding reduced
matrix and use the gained insights to prove the stability of persistence diagrams.

Matrix reduction revisited. We recall the notion of a reduced 0-1 matrix
in which each non-zero column has its lowest one in a unique row. Starting with
the boundary matrix, D, whose rows and columns correspond to the simplices
in the order they enter the filtration, we use the algorithm of the previous
section to reduce the matrix by adding columns from the left. The resulting
reduced matrix can therefore be written as R = DV, where V is an invertible,
upper triangular 0-1 matrix. Let U be the right inverse of V' and note that it is
again invertible and upper triangular. By multiplication from the right we get
RU = DVU = D which we call an RU-decomposition of the boundary matrix.
It is characterized by R being reduced and U being upper triangular. Not
surprisingly, the RU-decomposition is not unique. For example, we could use
additional column operations to remove as many ones from the matrix as we
can. On the other hand, the pairing implied by the lowest ones in the columns
is unique. To prepare the proof of this claim we write R%/ for the lower left
submatrix obtained by deleting the first ¢ — 1 rows and the last n — j columns
from R, as illustrated in Figure VI.6. Any linear combination of non-zero

i+l -

Figure V1.6: The shaded submatrix R of R. We have i = low(j) iff the indicated
inclusion-exclusion formula of ranks of lower left submatrices gives 1.

columns in R*J has its lowest one in the same row as the lowest of the lowest
ones of the involved columns. The combination is non-zero implying that the
combined columns are linearly independent. In other words, the rank of R*’
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is equal to its number of non-zero columns. We consider the same collection of
submatrices of the boundary matrix, and for each index pair (¢, j) we define

rp(i,j) = rank D* —rank D" 4 rank D11 — rank D41

We prove shortly that the pairing function can be expressed in terms of rp and
is therefore independent of the particular reduced matrix we derive from D.

PAIRING LEMMA. Letting D = RU be an RU-decomposition, we have ¢ =
low(j) iff rp(4,5) = 1. In particular, the pairing defined by the lowest ones in
the reduced matrix does not depend on R.

PROOF. We have rp = rg since adding columns from the left maintains the
rank of every lower left submatrix. It therefore suffices to prove that i = low(j)
iff rr(i,j) = 1. First assume i = low(j). We recall that the rank of R% is
equal to its number of non-zero columns. The last column is non-zero, so
rank R»/ — rank R%*J~! = 1. Deleting the top row makes the last column zero,
so rank R*1J — rank R*T1-1 = 0, as required. Second assume i # low(j).
If low(j) < i then the last column is zero, so rank R%/ — rank R%/~1 = 0
and rank R*T1J — rank RT19=1 = 0. If low(j) > i then the last column is
non-zero even after deleting the first row, so rank R%/ — rank R*/~! = 1 and
rank R+ — rank R*t'~! = 1. In both cases the claim follows.

Transpositions. Suppose we change the order of just two simplices, trans-
posing the two corresponding rows and columns in the boundary matrix. The
new boundary matrix is PDP, where P is the permutation matrix that swaps
i with ¢ + 1. Multiplication with P from the left swaps the two rows and
multiplication from the right swaps the two columns. Letting D = RU be an
RU-decomposition we now get PRUP = (PRP)(PUP), but this is not neces-
sarily an RU-decomposition of PDP. It can fail to be one because PRP is not
reduced or because PUP is not upper triangular. However, in each case this
can be remedied with relatively little effort. Recall that a simplex is positive if
its addition to the complex increases the Betti number of the same dimension.
It corresponds to a zero column in R. A simplex is negative if its addition to
the complex decreases the Betti number of one lower dimension. It corresponds
to a non-zero column with a lowest one in R.

Case 1. The simplices in positions ¢ and ¢+ 1 are both positive. Then column
i is zero so we may set Uli,i + 1] = 0. It follows that PUP is upper
triangular and we only need to worry about PRP. If it fails to be reduced,
as in Figure VI.7 on the left, we add column £ to column [ and thus obtain
an RU-decomposition.



VI.2 Stability 137

k | i+1 i i+1 i
i+1 1 1 i+1 1
i 1 1 1 i 111
PRP PUP PRP PUP

Figure VI.7: Left: after swapping the two positive simplices at positions ¢ and 7 + 1
the matrix on the left may no longer be reduced. Right: after swapping the two
negative simplices at positions ¢ and ¢ + 1 the matrix on the right may no longer be
upper triangular.

Case 2. The simplices in positions ¢ and ¢ + 1 are both negative. The corre-
sponding rows do not contain any lowest ones so we only need to worry
about PUP. It fails to be upper triangular iff U[i,i 4+ 1] = 1, as in Figure
V1.7 on the right. We fix the trouble by adding row ¢4 1 to row ¢ in U and
adding column ¢ to column ¢ + 1 in R. This does not affect the product
of the two matrices. If low(i) < low(i + 1) before this operation then the
lowest ones remain unique and we have an RU-decomposition after the
transposition. On the other hand, if low(i) > low(i + 1) then we need to
make the lowest ones unique again, which we do by adding column ¢+ 1 to
column i. After the transposition this is adding column ¢ to column ¢ + 1
and we get again an RU-decomposition.

Case 3. The simplex at position ¢ is negative and that at position ¢ 4+ 1 is
positive. Since row ¢ + 1 has no lowest one we only need to worry about
PUP. The only troublesome case is U[i, i+ 1] = 1 and we can remedy the
situation the same way as in Case 2.

Case 4. The simplex at position ¢ is positive and that at position 7 + 1 is
negative. Because row ¢ has no lowest one PRP is reduced. Furthermore,
column ¢ is zero so we may set Ui, i + 1] = 0 to make sure that PUP is
upper triangular.

The above algorithm maintains the RU-decomposition of the boundary matrix
in a constant number of row and column operations. It thus takes linear time
to perform a transposition of two contiguous simplices in the ordering of the
filtration.

Switches. A transposition of two simplices may or may not change the pair-
ing between positive and negative simplices. We call a change of the pairing a
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switch since it occurs only locally, exchanging the simplices between two pairs.
Switches are indicative of major topological changes during the rearrangement
of the simplices in the filtration. Figure VI.8 illustrates the three types we
observe, between two positive simplices, between two negative simplices, and
between a positive and a negative simplex. In each case the two simplices have
the same dimension.

Figure VI.8: The vertices u, v, and w are the oldest in their respective components,
which are eventually joined by the edges e and f.

Type I. Two positive simplices swap places and switch partners in the pairing.
This happens in Case 1 when the configuration is as shown in Figure VI.7.
To construct an example we start with the left complex in Figure VI.8.
The oldest vertices of the three components, u, v, w, enter the complex in
this order, and the edges e and f eventually join the components, also in
this order. We have (w, e) in the pairing because w is the younger of the
oldest vertices of the two components joined by e. Similarly, we have (v, f)
in the pairing. After swapping v and w we have (v,e) and (w, f) in the
pairing.

Type II. Two negative simplices swap places and switch partners in the pair-
ing. This happens in Case 2 when low(i) > low(i + 1). To construct
an example we start again with the left complex in Figure V1.8 assuming
u, v, w, e, [ enter the complex in this order. We now swap the two edges
causing a switch from (w, e), (v, f) to (w, f), (v,e) in the pairing.

Type III. A positive simplex swaps its place with a negative simplex. This
happens in Case 3 when low(i) > low(i + 1), as for Type II. We construct
an example from the right complex in Figure VI.8. Let u and v be the
oldest vertices in their components, which are joined first by e and then
by f. Suppose the hole created by f later fills up and t is the triangle
that kills the corresponding homology class. We thus have (v, e) and (f,t)
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in the pairing. After swapping the two edges we have (v, f) and (e, t).
Besides exchanging the two edges the switch also exchanges their types.

An interesting feature of all three types of switches is that they occur only
between disjoint or nested pairs. As illustrated in Figure V1.9, the switch then
maintains this property.

—

before. [ [T B ] [ CTT T ]
X X

after: [ B LT ] [ I [TT TT ]

Figure VI.9: The ordered sequences of simplices before and after the switch. A Type I
switch on the left and a Type I1I switch on the right. The Type II switch is symmetric
to the Type I switch and obtained by reflecting the picture along a vertical line.

Bottleneck distance. The above analysis of transpositions and the related
classification of switches will be instrumental in proving that persistence is
stable. Another crucial ingredient is the appropriate notion of distance between
two persistence diagrams, Dgm and Dgm’. Each diagram is a finite set of off-
diagonal points in R2. To each set we add an arbitrary, finite number of points
on the diagonal such that the total number of points is the same in both
sets. Then we form a perfect matching between the two sets and record the
length of the longest edge measured as L.-distance between its endpoints. The
bottleneck distance between the two diagrams is the infimum over all choices of
diagonal points, A and A’, and all perfect matchings,

dp(Dgm, Dgm’) = inf max||u — 3(u)]| ..
lo% u

where v : Dgm U A — Dgm’ U A’ is a bijection between the two sets and u €
Dgm U A is a point in the first set. Letting Dgm” be a third persistence diagram
it is clear that dg(Dgm,Dgm”) < dp(Dgm,Dgm’) + dg(Dgm’,Dgm”). In
words, the bottleneck distance satisfies the triangle inequality. It also satisfies
dp(Dgm, Dgm’) = 0 iff Dgm = Dgm’, so it is a metric.

Stability of persistence. To formulate the result, we introduce a function
f + K — R that maps each simplex to a real number. We require that f
be monotone by which we mean that f(r) < f(o) if 7 is a face of 0. We
obtain a filtration by ordering the simplices consistent with the function, that
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is, 7 precedes o if f(7) < f(o). After pairing the simplices as before, we map
each pair (7,0) to the point (f(7), f(c)) in the plane. This gives a persistence
diagram for each dimension p, which we denote as Dgm,,(f). As long as the
pairing does not change, small changes in the function correspond to small
changes in the diagram. To prove stability we have to establish the same even
if the pairing changes. Letting g : K — R be a second monotone function we
write || f — g||, = maxscx |f(0) — g(o)] for the largest absolute difference.

STABILITY THEOREM FOR FILTRATIONS. For any monotone functions f, g :
K — R and dimension p, the bottleneck distance between the two dimension
p persistence diagrams is dp(Dgm,,(f), Dgm,(9)) < [|f — 9|l -

PROOF. We transform f into g using the straight-line homotopy fy : K — R
defined by fa(o) = (1 = X)f(o) + Ag(o) for 0 < A < 1. Assuming f = fo and
g = f1 are both injective, there are only finitely many values of A for which
the mixed function is not injective. The transpositions happen exactly at these
values, which we denote as \; < Ay < ... < A\,,. It is convenient to add A\g = 0
and \,,+1 = 1 to the sequence.

We first consider two parameter values without transpositions between them,
Ai <1 <5< Aip1. The lowest one pairing is the same for r and for s. Letting
(1,0) be a member of the pairing, we have u, = (f,(7), fr(0)) in the diagram
of f. and us = (fs(7), fs(0)) in the diagram of fs. The Lo-distance between
these two points is the larger of the two coordinate differences, which implies

dB(ngp(f’l‘)7ngp(fS)) < ||fr_szoo
= (=f -9l
A transposition changes the matching of simplices but it does not affect the
persistence diagram. Hence,

m

dp (ngp(f)’ ngp(g)) < Z dp (ngp(fki )7 ngp(f)\i+1 ))
i=0

< Z()\iﬂ = M) = 9l -

i=0
The sum of the \; 1 — A; is equal to 1 which implies the claimed inequality.
Bibliographic notes. The first proof of the stability of persistence diagrams

has been given for functions; this will be described in the next section. Inde-
pendently, d’Amico, Frosini and Landis proved the stability of dimension 0
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persistence diagrams [2]. The proof of stability for filtrations presented in this
section is taken from [1]. It has the benefit of being elementary and implying
a linear time algorithm for maintaining an RU-decomposition of the boundary
matrix under transpositions of simplices.
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