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V1.4 Extended Persistence

In this section, we discuss an extension of persistence that is motivated by the
problem of fitting shapes to each other. This arises when we solve a puzzle but
also in protein docking, which is the attempt to predict protein interactions
computationally.

Elevation. Let M be a smoothly embedded 2-manifold in R?. Given a direc-
tion v € S?, the height function in this direction, f = f, : M — R, is defined
by f(z) = (x,u). We usually draw u vertically going up and think of the height
as the signed distance from a horizontal base plane, as in Figure VI.13. Given
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Figure VI.13: A smoothly embedded 2-manifold with level sets and critical points of
the vertical height function marked.

a threshold a € R, we recall that the sublevel set consists of all points with
height a or less, M, = f~1(—o00,a]. As mentioned in the previous section, the
sublevel sets are nested and define persistence through the corresponding linear
sequence of homology groups. For a generic smooth surface, the homological
critical values of the height function are the height values of isolated points.
We will be more precise about this in the next few sections where these points
are referred to as the critical points. For now it will suffice to note that there
are three different types of critical points, minima starting components, saddles
merging components or completing loops, and maxima filling holes. Assum-
ing the critical points have distinct heights, we can interpret the points in the
persistence diagrams of f as pairs of critical points. We have minimum-saddle
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pairs in the dimension 0 diagram and saddle-maximum pairs in the dimension
1 diagram.

To define elevation on the embedded 2-manifold, £ : M — R, we consider
all possible directions u € S?. A point x € M is critical for the height function
in direction v = +mn,, where n, is the unit normal at z. If x is paired with
another critical point y we define the elevation of x and y as their absolute
height difference, E(z) = E(y) = |fu(z) — fu(y)|, where v = £n, = £n,.
Since x is critical twice, for © = +n,, we need to make sure that the pairing is
the same in both directions, else we get contradictory assignments of elevation.
We also need all critical points to be paired, else we get white areas in which
elevation remains undefined. The latter is the reason we extend persistence
and the former is a constraint we need to observe in this extension.

Extended filtration. Let a1 < as < ... < a, be the homological critical
values of the height function f : Ml — R. At interleaved values by < b1 <
... < b, we get sublevel sets My, = f~1(—o0,b;] which are 2-manifolds with
boundary. Symmetrically, we define superlevel sets M’ = [b;, 00) which are
also 2-manifolds with boundary. We construct a sequence of homology groups
going up and a sequence of relative homology groups coming back down,

0 = Hp(My,) — ... Hy(My,)
= H,(M,M’) —...— H,(M,MY>) = o.

The homomorphisms are induced by inclusion. We recall that for modulo
2 arithmetic the homology groups are isomorphic to the cohomology groups.
Furthermore, Lefschetz duality implies H?(M,) ~ Hg_,(M, M®). This shows
that the construction is intrinsically symmetric although not necessarily within
the same dimension. Since we go from the trivial group to the trivial group,
everything that gets born eventually dies. As a consequence, all critical points
will be paired.

Tracing what gets born and killed in the relative homology groups is a bit
less intuitive than for the absolute homology groups going up. However, we
can translate the events between the absolute homology of M® and the relative
homology of the pair (M, MP"). Coming down the threshold decreases so the
superlevel set grows. Recall that a homology class in the superlevel set is
essential if it lives all the way down to bg.

Case 1. A dimension p homology class of M’ gets killed at the same time a
dimension p + 1 relative homology class of (M, M?) gets killed.

Case 2. An inessential dimension p homology class of M® gets born at the
same time a dimension p + 1 relative homology class of (M, M®) gets born.
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Case 3. An essential dimension p homology class of M gets born at the same
time a dimension p relative homology class of (M, M) gets killed.

Example. We illustrate the extended filtration and the translation rules for
the height function of the genus-2 torus of Figure VI.13. Going up, a; and
as give birth to classes in Ho, ay4, as, ag, ar, ag give birth to classes in Hy, and
a1p gives birth to a class in Ho. All classes live until the end of the ascending
pass, except for the dimension 0 class of as which is killed by a3 and the
dimension 1 class of ag which is killed by ag. These are the only two off-
diagonal points in the persistence diagram as we used to know it. Coming
down, ajq kills the class in Hy and ag gives birth to a class in H; that is killed
by as. Furthermore, a7, ag, as, a4 kill the classes in Hy, as gives birth to a class
in Hy that is killed by a9, and finally a; kills the class in Ho. To summarize, the
pairs of critical values defining the points in the diagrams are (a1, a1o), (az, as)
in dimension 0, (a4, a7), (as, as), (a6, as5), (a7, a4), (as, ag), (ag, ag) in dimension
1, and (a19,a1), (a3, az) in dimension 2. We show the diagrams in Figure VI.14
using different symbols for points born and killed going up, born going up and
killed coming down, and born and killed coming down. They make up the
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Figure VI.14: From left to right: the dimension 0, dimension 1, and dimension 2
persistence diagrams of the height function in Figure VI.13.

ordinary, the ertended, and the relative sub-diagrams, which we denote as Ord,
Ext, and Rel with the dimension in the index and the function in parenthesis,
as before. Note that the points of the ordinary sub-diagram lie above and those
of the relative sub-diagram lie below the diagonal. The points of the extended
sub-diagram can lie on either side.

Duality and symmetry. The symmetries we observe in Figure VI.14 are
not coincidental. They arise as consequences of the Lefschetz duality be-
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tween absolute and relative homology groups of complementary dimensions,
H,(Mp) ~ Hg—,(M,MP®). This translates into a duality result for persistence
diagrams which we state without proof. We use a superscript ‘I’ to indicate
reflection across the main diagonal.

DuaLiTy THEOREM. A continuous function f on a d-manifold has persis-
tence diagrams that are reflections of each other as follows,

Ord,(f) = Rell_,(f);
Ext,(f) = Extl_,(f);
Rel,(f) = Ordi_,(f).

Equivalently, the full dimension p persistence diagram is the reflection of the full
dimension d — p persistence diagram, Dgm,,(f) = ngdT_p(f). We have d = 2
for the example in Figures VI.13 and VI.14 and we indeed have diagrams that
are reflections of each other as described. For 2p = d the extended sub-diagram
is the reflection of itself and therefore symmetric across the main diagonal.

Recall that the definition of elevation requires the pairing of critical points
be the same for opposing height functions. We can use duality to prove that
they are indeed the same. More specifically, we have the following structural
result again expressed in terms of sub-diagrams of the persistence diagrams and
given without proof. We use the superscript ‘R’ to indicate reflecting along the
minor diagonal.

SYMMETRY THEOREM. Continuous functions f and — f on a d-manifold have
persistence diagrams that are reflections of each other as follows,
Ordy(f) = Ordg,_(~/);
Ext,(f) Eth;p(—f);
Rel,(f) = Relg, 1(=f).

The reflection across the minor diagonal expresses the symmetry we require. A
point (a,b) maps to (—b, —a), reversing birth and death and changing the sign
of each coordinate.

Lower and upper stars. To describe how we compute extended persistence,
let K be a triangulation of a d-manifold M. We assume the height function
is defined at the vertices. We also assume that the height values are distinct



152 VI PERSISTENCE

so we can index the vertices such that f(v1) < f(ve < ... < f(v,). Let
f + K — R be the continuous function on | K| obtained by piecewise linear
extension of the values at the vertices. Writing a; = f(v;) and introducing
interleaved values by < b; < ... < b, we can define sublevel sets and superlevel
sets as before. The set of points z € | K| with f(z) < b; is homeomorphic
to M, and thus a manifold with boundary. Similarly, the set of points with
f(x) > b; is homeomorphic to M¥ and a manifold with boundary. We can
retract the partially used simplices and get homotopy equivalent subcomplexes
of K. Specifically, let K; be the full subcomplex defined by the first ¢ vertices
in the ordering along f and let K* be the full subcomplex defined by the last
n — 1 vertices. The two subcomplexes of K are disjoint although together they
cover all n vertices. The only simplices not in either subcomplex are the ones
that connect the first ¢ with the last n — i vertices. Recall that the star of a
vertex v; consists of all simplices ¢ € K that have v; as a vertex. The lower
star is the subset of simplices for which v; is the highest vertex and the upper
star is the subset for which v; is the lowest vertex,

St_v;, = {oeSty|veod= flv) < f(v)}
Sttv, = {oceStv; |vea= f(v)> f(uv)}

Since every simplex has a unique highest vertex, the lower stars partition K.
Similarly, the upper stars partition K. With this notation, Ky = ) and K; =
K; 1 USt_v; for 1 < i < n. Equivalently, K; is the union of the first ¢ lower
stars. Symmetrically, K" = ), K' = K**1 USt*v;;1, and K* is the union of
the last n — i upper stars.

Computation. By construction, the K; have the same homotopy type as the
sublevel sets and the K have the same homotopy types as the superlevel sets of
M. We can therefore compute persistence by adding the simplices accordingly.
Let A be the boundary matrix for the ascending pass, storing the simplices
in blocks that correspond to the lower stars of v; to v,, in this order. Within
each block, we store the simplices in the order of non-decreasing dimension and
break remaining ties arbitrarily. All simplices in the same block are assigned
the same value, namely the height of the vertex defining the lower star. If
two simplices in the same block are paired they therefore define a point on the
diagonal of the appropriate persistence diagram. In other words, the homology
class dies as soon as it is born and therefore has zero persistence. Only pairs
between blocks carry any significance.

Let B be the boundary matrix for the descending pass, storing the simplices
in blocks that correspond to the upper stars of v, to vp, in this order. Using
A and B we form a bigger matrix by adding the zero matrix at the lower left
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and the permutation matrix that translates between A and B at the upper
right, as in Figure VI.15. We can think of the result as the boundary matrix

Figure VI.15: Schematic picture of the block structure representing the construction
of K going up and the subsequence destruction coming down.

of a new complex, namely the cone over K. We pick a new, dummy vertex vg
and for each i-simplex o add the (i + 1)-simplex o U {vg}. Adding the cone
removes any non-trivial homology. This explains why reducing the big matrix
works. As we move from left to right we first construct K forming pairs by
reducing A. At the halfway point the only unpaired simplices are the ones
that gave birth to the essential homology classes. As we continue we cone off
K step by step, eventually removing all non-trivial homology. In the end, the
ordinary, extended, and relative sub-diagrams are given by the lowest ones in
the upper-left, upper-right, and lower-right quadrants of the reduced matrix.

Bibliographic notes. The extension of persistence described in this section
is due to Cohen-Steiner et al. [2]. It makes essential use of Poincaré and Lef-
schetz duality to obtain the desired symmetry properties for manifolds. The
construction applies equally well to general topological spaces but without guar-
antee of duality and symmetry. The main motivation for the extension is the
elevation function introduced in [1] to help in the prediction of interactions
between known protein structures.
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