
Chapter 6

Automated Mechanism Design

Mechanism design has traditionally been a manual endeavor. The designer uses experience and
intuition to hypothesize that a certain rule set is desirable in some ways, and then tries to prove that
this is the case. Alternatively, the designer formulates the mechanism design problem mathemat-
ically and characterizes desirable mechanisms analytically in that framework. These approaches
have yielded a small number of canonical mechanisms over the last 40 years, the most significant of
which we discussed in Chapter 4. Each of these mechanisms is designed for a class of settings and
a specific objective. The upside of these mechanisms is that they do not rely on (even probabilistic)
information about the agents’ preferences (e.g. Vickrey-Clarke-Groves mechanisms), or they can be
easily applied to any probability distribution over the preferences (e.g. the dAGVA mechanism, the
Myerson auction, and the Maskin-Riley multi-unit auction). However, these general mechanisms
also have significant downsides:

• The most famous and most broadly applicable general mechanisms, VCG and dAGVA, only
maximize social welfare. If the designer is self-interested, as is the case in many electronic
commerce settings, these mechanisms do not maximize the designer’s objective.

• The general mechanisms that do focus on a self-interested designer are only applicable in
very restricted settings. For example, Myerson’s expected revenue maximizing auction is for
selling a single item, and Maskin and Riley’s expected revenue maximizing auction is for
selling multiple identical units of an item.

• Even in the restricted settings in which these mechanisms apply, the mechanisms only allow
for payment maximization. In practice, the designer may also be interested in the outcome
per se. For example, an auctioneer may care which bidder receives the item.

• It is often assumed that side payments can be used to tailor the agents’ incentives, but this
is not always practical. For example, in barter-based electronic marketplaces—such as my-
barterclub.com, Recipco, and National Trade Banc—side payments are not allowed. Fur-
thermore, among software agents, it might be more desirable to construct mechanisms that
do not rely on the ability to make payments, because many software agents do not have the
infrastructure to make payments.

123

124 CHAPTER 6. AUTOMATED MECHANISM DESIGN

• The most common mechanisms (e.g., VCG, dAGVA, the Myerson auction, and the Maskin-
Riley auction) assume that the agents have quasilinear preferences—that is, they assume that
the utility function of each agent i ∈ {1, . . . , n} can be written as ui(o, π1, . . . , πn) = vi(o)−
πi, where o is the outcome and πi is the amount that agent i has to pay. So, very restrictively,
it is assumed that 1) the agent’s valuation, vi, of outcomes is independent of money, 2) the
agent does not care about other agents’ payments, and 3) the agent is risk neutral.

In sharp contrast to manual mechanism design, in this chapter we introduce a systematic approach—
called automated mechanism design (AMD)—where the mechanism is automatically created for the
setting and objective at hand [Conitzer and Sandholm, 2002b].1 This has at least four important
advantages:

• It can be used in settings beyond the classes of problems that have been successfully studied
in (manual) mechanism design to date.

• It can allow one to circumvent the impossibility results: when the mechanism is designed for
the setting (instance) at hand, it does not matter that it would not work on preferences beyond
those in that setting (e.g., for a class of settings). Even when the optimal mechanism—created
automatically—does not circumvent the impossibility, it always minimizes the pain entailed
by impossibility.

• It can yield better mechanisms (in terms of better outcomes and/or stronger nonmanipulability
guarantees2) than the canonical mechanisms because the mechanism capitalizes on the partic-
ulars of the setting (the probabilistic (or other) information that the mechanism designer has
about the agents’ preferences). Given the vast amount of information that parties have about
each other today, it is astonishing that the canonical mechanisms (such as first-price reverse
auctions), which ignore that information, have prevailed thus far. It seems likely that future
mechanisms will be created automatically. For example, imagine a Fortune 1000 company
automatically creating its procurement mechanism based on its statistical knowledge about
its suppliers (and potentially also the public prices of the suppliers’ inputs, etc.). Initial work
like this is already being conducted at CombineNet, Inc.

• It shifts the burden of mechanism design from humans to a machine.

The rest of this chapter is layed out as follows. In Section 6.1, we define the basic computational
problem of automated mechanism design [Conitzer and Sandholm, 2002b]. In Section 6.2, we illus-
trate the types of mechanism that automated mechanism design can create, using divorce settlement
as an example [Conitzer and Sandholm, 2003a]. In Section 6.3, we show that several variants of the
problem of designing an optimal deterministic mechanism are hard [Conitzer and Sandholm, 2003b,

1Automated mechanism design is completely different from algorithmic mechanism design [Nisan and Ronen, 2001].
In the latter, the mechanism is designed manually with the goal that executing the mechanism is computationally tractable.
On the other hand, in automated mechanism design, the mechanism itself is designed automatically. Some work on
automatically choosing the mechanism to use that preceded our work was done by Cliff [2001], Byde [2003], and Phelps
et al. [2002]. These works focused on setting a parameter of the mechanism (rather than searching through the space of
all possible mechanisms, as we do here), and evaluated the resulting mechanism based on agents that they evolved with
the mechanism (rather than requiring truthfulness).

2For example, satisfaction of ex post IC and/or IR constraints rather than their ex interim variants.

6.1. THE COMPUTATIONAL PROBLEM 125

2004f]. In Section 6.4, we show that optimal randomized mechanisms can be designed in polyno-
mial time using a linear programming formulation, and that a mixed integer programming version
of this formulation can be used to design optimal deterministic mechanisms [Conitzer and Sand-
holm, 2002b, 2003b, 2004f]. In Section 6.5, we demonstrate some initial applications of automated
mechanism design [Conitzer and Sandholm, 2003a]. In Section 6.6, we give experimental scala-
bility results for the linear/mixed integer programming techniques Conitzer and Sandholm [2003a].
In Section 6.7, we give and study a special-purpose algorithm for the special case of designing a
deterministic mechanism for a single agent that does not use payments [Conitzer and Sandholm,
2004a]. In Section 6.8, we introduce a representation that can be more concise than the straightfor-
ward representation of automated mechanism design problem instances, and study how using this
representation affects the complexity of the problem [Conitzer and Sandholm, 2003c].

6.1 The computational problem

In this section, we define the computational problem of automated mechanism design. First, we
define an instance of the problem as follows.

Definition 24 In an automated mechanism design setting, we are given
A finite set of outcomes O;
A finite set of n agents;
For each agent i,

• a finite3 set of types set of types Θi,

• a probability distribution γi over Θi (in the case of correlated types, there is a single joint
distribution γ over Θ1 × . . .×Θn),

• a utility function ui : Θi ×O → R;

An objective function whose expectation the designer wishes to maximize.

There are many possible objective functions the designer might have, for example, social welfare
(where the designer seeks to maximize the sum of the agents’ utilities,

n
∑

i=1
ui(θ, o), or

n
∑

i=1
ui(θ, o)−

πi if payments are taken into account), or the minimum utility of any agent (where the designer seeks
to maximize the worst utility had by any agent, mini ui(θ, o), or mini ui(θ, o)− πi if payments are
taken into account). In both of these cases, the designer is benevolent, because the designer, in some
sense, is pursuing the agents’ collective happiness. On the other hand, a self-interested designer
cares only about the outcome chosen (that is, the designer does not care how the outcome relates
to the agents’ preferences, but rather has a fixed preference over the outcomes), and about the net
payments made by the agents, which flow to the designer. Specifically, a self-interested designer

3It should be noted that in mechanism design, the type space is often continuous. However, the techniques described
in this chapter require a finite number of types. One can approximate a continuous type space with a discretized type
space, but perhaps future research will discover more elegant and better methods for dealing with continuous type spaces.

126 CHAPTER 6. AUTOMATED MECHANISM DESIGN

has an objective function g(o) +
n
∑

i=1
πi, where g : O → R indicates the designer’s own preference

over the outcomes, and πi is the payment made by agent i. In the case where g = 0 everywhere,
the designer is said to be payment maximizing. In the case where payments are not possible, g
constitutes the objective function by itself.

We can now define the computational problem of automated mechanism design.

Definition 25 (AUTOMATED-MECHANISM-DESIGN (AMD)) We are given an automated mech-
anism design setting, an IR notion (ex interim, ex post, or none), and a solution concept (domi-
nant strategies or Bayes-Nash equilibrium). Also, we are told whether payments are possible, and
whether randomization is possible. Finally, we are given a target value G. We are asked whether
there exists a mechanism of the specified type that satisfies both the IR notion and the solution
concept, and gives an expected value of at least G for the objective.4

6.2 A tiny example: Divorce settlement

To get some intuition about the types of mechanism that AMD generates, in this section, we apply
AMD to divorce settlement. We study several variants of the mechanism design problem, and the
optimal solutions (mechanisms) to those variants generated by our AMD implementation (described
later). We first study a benevolent arbitrator, then a benevolent arbitrator that uses payments to
structure the agents’ incentives, and finally a greedy arbitrator that wants to maximize the sum of
side payments from the agents—while still motivating the agents to come to the arbitration.

6.2.1 A benevolent arbitrator

A couple is getting a divorce. They jointly own a painting and the arbitrator has to decide what
happens to the painting. There are 4 options to decide among: (1) the husband gets the painting, (2)
the wife gets the painting, (3) the painting remains in joint ownership and is hung in a museum, and
(4) the painting is burned. The husband and wife each have two possible types: one that implies not
caring for the painting too much (low), and one that implies being strongly attached to the painting
(high). (low) is had with probability .8, (high) with .2, by each party. To maximize social welfare,
the arbitrator would like to give the painting to whoever cares for it more, but even someone who
does not care much for it would prefer having it over not having it, making the arbitrator’s job in
ascertaining the preferences nontrivial. Specifically, the utility function is (for either party)

u(low,get the painting)=2
u(low,other gets the painting)=0
u(low,joint ownership)=1
u(low,burn the painting)=-10 (both parties feel
that burning the painting would be a terrible
thing from an art history perspective)
u(high,get the painting)=100

4For studying computational complexity, we phrase AMD as a decision problem, but the corresponding optimization
problem is clear.

6.2. A TINY EXAMPLE: DIVORCE SETTLEMENT 127

u(high,other gets the painting)=0
u(high,joint ownership)=50
u(high,burn the painting)=-10

Let us assume (for now) that side payments are not possible, randomization is not possible, and that
implementation in dominant strategies is required. Now we have a well-specified AMD instance.
Our solver generated the following optimal mechanism for this setting:

husband_low husband_high
wife_low husband gets painting husband gets painting
wife_high husband gets painting husband gets painting

That is, we cannot do better than always giving the painting to the husband (or always giving it to
the wife). (The solver does not look for the “fairest” mechanism because fairness is not part of the
objective we specified.) Now let us change the problem slightly, by requiring only implementation
in BNE. For this instance, our solver generated the following optimal mechanism:

husband_low husband_high
wife_low joint ownership husband gets painting
wife_high wife gets painting painting is burned

Thus, when we relax the incentive compatibility constraint to BNE, we can do better by sometimes
burning the painting! The burning of the painting (with which nobody is happy) is sufficiently
helpful in tailoring the incentives that it becomes a key part of the mechanism. (This is somewhat
similar to the item not being sold in an optimal (i.e., revenue-maximizing) auction—more on optimal
auctions later.) Now let us see whether we can do better by also allowing for randomization in the
mechanism. It turns out that we can, and the optimal mechanism generated by the solver is the
following:

husband_low husband_high
wife_low .57: husband, .43: wife 1: husband
wife_high 1: wife .45: burn; .55: husband

The randomization helps us because the threat of burning the painting with some probability when
both report high is enough to obtain the incentive effect that allows us to give the painting to the
right party in other settings. Interestingly, the mechanism now chooses to randomize over the party
that receives the painting rather than awarding joint ownership in the setting where both report low.

6.2.2 A benevolent arbitrator that uses payments

Now imagine that we can force the parties to pay money, depending on the types reported—that
is, side payments are possible. The arbitrator (for now) is still only concerned with the parties’
welfare—taking into account how much money they lose because of the payment rule, as well as the

128 CHAPTER 6. AUTOMATED MECHANISM DESIGN

allocation of the painting.5 Thus, it does not matter to the arbitrator whether the agents’ net payment
goes to the arbitrator, a charity, or is burned, but other things being equal the arbitrator would like
to minimize the payments that the agents make. Now the optimal deterministic mechanism in
dominant strategies generated by the solver has the following allocation rule:

husband_low husband_high
wife_low husband gets painting husband gets painting
wife_high wife gets painting wife gets painting

The payment function is (wife’s payment listed first):

husband_a husband_high
wife_low 0,0 0,0
wife_high 2,0 2,0

In this mechanism, the allocation of the painting is always optimal. However, the price (in terms of
social welfare) that is paid for this is that the wife must sometimes pay money; the fact that she has
to pay 2 whenever she reports her high type removes her incentive to falsely report her high type.

6.2.3 An arbitrator that attempts to maximize the payments extracted

Now we imagine a non-benevolent arbitrator, who is running an arbitration business. The agents’
net payments now go to the arbitrator, who is seeking to maximize these payments. Of course, the
arbitrator cannot extract arbitrary amounts from the parties; rather, the parties should overall still be
happy with their decision to go to the arbitrator. Thus, we need an IR constraint. If we require ex
post IR and dominant strategies, the optimal deterministic mechanism generated by the solver has
the following allocation rule:

husband_low husband_high
wife_low painting is burned husband gets painting
wife_high wife gets painting wife gets painting

Now the painting is burned when both parties report their low types! (This is even more similar
to an item not being sold in an optimal combinatorial auction.) As for the mechanism’s payment
function: in this setting, the arbitrator is always able to extract all of each agent’s utility from the
allocation as her payment (but note that the allocation is not always optimal: the painting is burned
sometimes, in which case the arbitrator obtains no revenue, but rather has to compensate the parties
involved for the loss of the painting).

Many other specifications of the problem are possible, but we will not study them here.

5Classical mechanism design often does not count the payments in the social welfare calculation (e.g., the VCG
mechanism), allowing for easier analysis; one of the benefits of automated mechanism design is that the payments made
can easily be integrated into the social welfare calculation in designing the mechanisms.

6.3. COMPLEXITY OF DESIGNING DETERMINISTIC MECHANISMS 129

6.3 Complexity of designing deterministic mechanisms

This section characterizes the computational complexity of automated mechanism design for the
case where the designed mechanism is required to be deterministic. An interesting special case
is the setting where there is only one agent (or, more generally, only one type-reporting agent).
In this case, the agent always knows everything there is to know about the other agents’ types—
because there is nothing to know about their types. Since ex post and ex interim IR only differ
on what an agent is assumed to know about other agents’ types, the two IR concepts coincide
here. Also, because implementation in dominant strategies and implementation in Bayes-Nash
equilibrium only differ on what an agent is assumed to know about other agents’ types, the two
solution concepts coincide here. This observation is a useful tool in proving hardness results: if
we prove computational hardness in the single-agent setting, this immediately implies hardness for
both IR concepts, for both solution concepts, and for any constant number of agents.

In this section, we will show that most variants of the automated mechanism design problem are
hard (NP-complete) even in the single-agent setting, if the mechanism is required to be deterministic.
(In contrast, we will show in Section 6.4 that allowing for randomized mechanisms makes the
problem solvable in polynomial time.) Most of the reductions are from the MINSAT problem:

Definition 26 (MINSAT) We are given a formula φ in conjunctive normal form, represented by a
set of Boolean variables V and a set of clauses C, and an integer K (K < |C|). We are asked
whether there exists an assignment to the variables in V such that at most K clauses in φ are
satisfied.

MINSAT was recently shown to be NP-complete [Kohli et al., 1994].
We first show that the problem of designing a welfare-maximizing deterministic mechanism

that does not use payments is NP-complete. Of course, this problem is easy if there is only a single
agent: in this case, the welfare-maximizing mechanism is to always give the agent one of its most
preferred outcomes. However, we show that if, in addition to the type-reporting agent, there is an
additional agent that does not report a type (for example, because its type is common knowledge),
then the problem becomes NP-complete.

Theorem 37 The AMD problem for designing deterministic mechanisms without payments is NP-
complete, even when the objective is social welfare, there is only a single type-reporting agent (in
addition to an agent that does not report a type), and the probability distribution over Θ is uniform.
(Membership in NP is guaranteed only if the number of agents is constant.)

Proof: The problem is in NP when the number of agents is constant because we can nondeterminis-
tically generate an outcome selection function, and subsequently verify in polynomial time whether
it is nonmanipulable, and whether the expectation of the objective function achieves the threshold.
(We note that if we do not restrict the number of agents, then the outcome selection function will
have exponential size.) To show that the problem is NP-hard, we reduce an arbitrary MINSAT
instance to an automated mechanism design instance as follows.

Let the outcomes O be as follows. For every clause c ∈ C, there is an outcome oc. For every
variable v ∈ V , there is an outcome ov and an outcome o−v. Finally, there is a single additional
outcome ob.

130 CHAPTER 6. AUTOMATED MECHANISM DESIGN

Let L be the set of literals, that is, L = {v : v ∈ V } ∪ {−v : v ∈ V }. Then, let the type space
Θ be as follows. For every clause c ∈ C, there is a type θc. For every variable v ∈ V , there is a type
θv. The probability distribution over Θ is uniform.

Let the utility function be as follows:

• u(θv, ov) = u(θv, o−v) = |C|+ 3 for all v ∈ V ;

• u(θc, ol) = 1 for all c ∈ C and l ∈ c (that is, l is a literal that occurs in c);

• u(θc, oc) = 1 for all c ∈ C;

• u is 0 everywhere else.

Let g(θ, o) = u(θ, o) + v(o), where v(ob) = 2 and v is 0 everywhere else. (Here, v represents the
utility of the agent that does not report a type.) Finally, let G = |V |(|C|+3)+2|C|−k

|V |+|C| (k is the threshold
of the MINSAT instance). We claim that the automated mechanism design instance has a solution
if and only if the MINSAT instance has a solution.

First suppose that the MINSAT instance has a solution, that is, an assignment to the variables
that satisfies at most k clauses. Then consider the following mechanism. If v ∈ V is set to true
in the assignment, then set o(θv) = ov; if it is set to false, then set o(θv) = o−v. If c ∈ C is
satisfied by the assignment, then set o(θc) = oc; if it is not satisfied, then set o(θc) = ob. First we
show that this mechanism is nonmanipulable. If the agent’s type is either any one of the θv or one
of the θc corresponding to a satisfied clause c, then the mechanism gives the agent the maximum
utility it can possibly get with that type, so there is no incentive for the agent to misreport. On the
other hand, if the agent’s type is one of the θc corresponding to a nonsatisfied clause c, then any
outcome ol corresponding to a literal l in c, or oc, would give utility 1, as opposed to ob (which the
mechanism actually chooses for θc) which gives the agent utility 0. It follows that the mechanism
is nonmanipulable if and only if there is no other θ such that o(θ) is any outcome ol corresponding
to a literal l in c, or oc. It is easy to see that there is indeed no θ such that o(θ) = oc. There is
also no θ such that o(θ) is any outcome ol corresponding to a literal l in c: this is because the only
type that could possibly give the outcome ol is θv, where v is the variable corresponding to l; but
because c is not satisfied in the assignment to the variables, we know that actually, o(θv) = o−l
(that is, the outcome corresponding to the opposite literal is chosen). It follows that the mechanism
is indeed nonmanipulable. All that is left to show is that the expected value of g(θ, o(θ)) reaches
G. For any θv we have g(θv, o(θv)) = |C| + 3. For any θc where c is a satisfied clause, we have
g(θc, o(θc)) = 1. Finally, for any θc where c is an unsatisfied clause, we have g(θc, o(θc)) = 2. If
s is the number of satisfied clauses, then, using the facts that the probability distribution over Θ is
uniform and that s ≤ k, we have E[g(θ, o(θ))] = |V |(|C|+3)+s+2(|C|−s)

|V |+|C| ≥ |V |(|C|+3)+2|C|−k
|V |+|C| = G.

So there is a solution to the automated mechanism design instance.
Now suppose there is a solution to the automated mechanism design instance, that is, a non-

manipulable mechanism given by an outcome function o : Θ → O, which leads to an expected
value of g(θ, o(θ)) of at least G. We observe that the maximum value that we can get for g(θ, o(θ))
is |C| + 3 when θ is one of the θv, and 2 otherwise. Thus, if for some v it were the case that
o(θv) /∈ {ov, o−v} and hence g(θ, o(θ)) ≤ 2, it would follow that E[g(θ, o(θ))] can be at most

6.3. COMPLEXITY OF DESIGNING DETERMINISTIC MECHANISMS 131

(|V |−1)(|C|+3)+2(|C|+1)
|V |+|C| < (|V |)(|C|+3)+|C|

|V |+|C| < |V |(|C|+3)+2|C|−k
|V |+|C| = G (because k < |C|). (Contra-

diction.) It follows that for all v, o(θv) ∈ {ov, o−v}. From this we can derive an assignment to
the variables: set v to true if o(θv) = ov, and to false if o(θv) = o−v. We claim this assignment
is a solution to the MINSAT instance for the following reason. If a clause c is satisfied by this
assignment, there is some literal l such that l ∈ c and o(θv) = ol for the corresponding variable v.
But then o(θc) cannot be ob, because if it were, the agent would be motivated to report θv when its
true type is θc, to get a utility of 1 as opposed to the 0 it would get for reporting truthfully. Hence
g(θc, o(θc)) can be at most 1 for a satisfied clause c. It follows that E[g(θ, o(θ))] can be at most
|V |(|C|+3)+s+2(|C|−s)

|V |+|C| where s is the number of satisfied clauses. But because E[g(θ, o(θ))] ≥ G,
we can conclude |V |(|C|+3)+s+2(|C|−s)

|V |+|C| ≥ G = |V |(|C|+3)+2|C|−k
|V |+|C| , which is equivalent to s ≤ k. So

there is a solution to the MINSAT instance.

We note that the previous result is in contrast to the case where payments are allowed: in that
case, the VCG mechanism constitutes an optimal mechanism, and it can be computed in polyno-
mial time. We may wonder if the ability to use payments makes the automated mechanism design
problem easy in all cases. The following theorem shows that this is not the case: there are objective
functions (that do not depend on the payments made) such that designing the optimal deterministic
mechanism is hard even when the mechanism is allowed to use payments.

Theorem 38 The AMD problem for designing deterministic mechanisms with payments is NP-
complete, even when the objective does not depend on the payments made, there is only a single
agent, and the probability distribution over Θ is uniform. (Membership in NP is guaranteed only if
the number of agents is constant.)

Proof: First we show that the problem is in NP. When the number of agents is constant, we can
nondeterministically generate an outcome function o. We then check whether the payment function
π can be set so as to make the mechanism nonmanipulable. Because we have already generated o,
we can phrase this problem as a linear program with the following constraints: for all θ, θ̂ ∈ Θ,
u(θ, o(θ))+π(θ) ≥ u(θ, o(θ̂))+π(θ̂). If the linear program has a solution, we subsequently check
if the corresponding mechanism achieves the threshold G for E[g(θ, o(θ))].

To show that the problem is NP-hard, we reduce an arbitrary INDEPENDENT-SET instance to
an automated mechanism design instance as follows. For every vertex v ∈ V , let there be outcomes
o1v and o2v, and a type θv. The probability distribution over Θ is uniform. Let the utility function be
as follows:

• u(θv, o
1
w) = 1 for all v, w ∈ V with (v, w) ∈ E;

• u(θv, o
1
w) = 0 for all v, w ∈ V with (v, w) /∈ E (this includes all cases where v = w as there

are no self-loops in the graph);

• u(θv, o
2
v) = 1 for all v ∈ V ;

• u(θv, o
2
w) = 0 for all w ∈ V with v 6= w.

132 CHAPTER 6. AUTOMATED MECHANISM DESIGN

Let the objective function be g(θv, o1v) = 1 for all v ∈ V , and g() = 0 everywhere else. Finally, let
G = k

|V | (where k is the threshold of the INDEPENDENT-SET instance). We claim that the auto-
mated mechanism design instance has a solution if and only if the INDEPENDENT-SET instance
has a solution.

First suppose that the INDEPENDENT-SET instance has a solution, that is, some I ⊆ V of size
at least k such that no two elements of I have an edge between them. Then consider the following
mechanism. For all v ∈ I , let o(θv) = o1v. For all v /∈ V , let o(θv) = o2v. Let π be zero everywhere
(no payments are made). First we show that this mechanism is indeed nonmanipulable. If v ∈ I
and w ∈ I , then (because I is an independent set) (v, w) /∈ I , and thus u(θv, o(θv)) + π(θv) =
u(θv, o

1
v) = 0 = u(θv, o

1
w) = u(θv, o(θw)) + π(θw). If v ∈ I and w /∈ I , then u(θv, o(θv)) +

π(θv) = u(θv, o
1
v) = 0 = u(θv, o

2
w) = u(θv, o(θw)) + π(θw). Finally, if v /∈ I , then u(θv, o(θv)) +

π(θv) = u(θv, o
2
v) = 1, which is the highest possible value the agent can attain. So there is no

incentive for the agent to misreport anywhere. All that is left to show is that the expected value of
g(θ, o(θ)) reaches G. For v ∈ I , g(θ, o(θ)) = g(θ, o1v) = 1, and for v /∈ I , g(θ, o(θ)) = g(θ, o2v) =

0. Because the distribution over Θ is uniform, it follows that E[g(θ, o(θ))] = |I|
|V | ≥

k
|V | = G. So

there is a solution to the automated mechanism design instance.
Now suppose there is a solution to the automated mechanism design instance, that is, a nonma-

nipulable mechanism given by an outcome function o : Θ→ O and a payment function π : Θ→ R,
which leads to an expected value of g(θ, o(θ)) of at least G. Let I = {v : o(θ) = o1v}. We claim I is
a solution to the INDEPENDENT-SET instance. First, because g(θv, o(θv)) is 1 only for v ∈ I , we
know that k

|V | = G ≤ E[g(θ, o(θ))] = |I|
|V | , or equivalently, |I| ≥ k. All that is left to show is that

there are no edges between elements of I . Suppose there were an edge between v, w ∈ I . Without
loss of generality, say π(θv) ≤ π(θw). Then, u(θv, o(θv)) + π(θv) = u(θv, o

1
v) + π(θv) = π(θv) ≤

π(θw) < 1+π(θw) = u(θv, o
1
w)+π(θw) = u(θv, o(θw))+π(θw). So the agent has an incentive to

misreport when its type is θv, which contradicts the nonmanipulability of the mechanism. It follows
that there are no edges between elements of I . So there is a solution to the INDEPENDENT-SET
instance.

The objective functions studied up to this point depended on the agents’ types. However, this
is not the case for so-called self-interested designers, who are concerned only with how the chosen
outcome fits their own goals and the payments collected. Formally, we say that the designer is
self-interested if the objective function takes the form g(o) +

n
∑

i=1
πi, where g : O → R indicates

the designer’s own preference over the outcomes, and πi is the payment made by agent i. While
the previous complexity results did not depend on the presence of an IR constraint, the automated
mechanism design problem is trivial for a self-interested designer without an IR constraint: the
designer can simply choose the outcome that it likes best, and force the agents to pay an unbounded
amount. Hence, the following hardness results depend on the presence of an IR constraint. We first
study the case where the objective is

n
∑

i=1
πi, that is, the designer is only interested in maximizing

the total payment, and show that the problem of designing an optimal mechanism in this case is
NP-complete.

Theorem 39 The AMD problem for designing deterministic mechanisms is NP-complete, even

6.3. COMPLEXITY OF DESIGNING DETERMINISTIC MECHANISMS 133

when the objective is to maximize total payments made (under an IR constraint), there is only a
single agent, and the probability distribution over Θ is uniform. (Membership in NP is guaranteed
only if the number of agents is constant.)

Proof: The proof of membership in NP for a constant number of agents is similar to previous
proofs. To show NP-hardness, we reduce an arbitrary MINSAT instance to the following automated
mechanism design instance. Let the agent’s type set be Θ = {θc : c ∈ C} ∪ {θv : v ∈ V }, where
C is the set of clauses in the MINSAT instance, and V is the set of variables. Let the probability
distribution over these types be uniform. Let the outcome set be O = {o0} ∪ {oc : c ∈ C} ∪ {ol :
l ∈ L}, where L is the set of literals, that is, L = {+v : v ∈ V } ∪ {−v : v ∈ V }. Let the
notation v(l) = v denote that v is the variable corresponding to the literal l, that is, l ∈ {+v,−v}.
Let l ∈ c denote that the literal l occurs in clause c. Then, let the agent’s utility function be
given by u(θc, ol) = |Θ| + 1 for all l ∈ L with l ∈ c; u(θc, ol) = 0 for all l ∈ L with l /∈ c;
u(θc, oc) = |Θ| + 1; u(θc, oc′) = 0 for all c′ ∈ C with c 6= c′; u(θv, ol) = |Θ| for all l ∈ L with
v(l) = v; u(θv, ol) = 0 for all l ∈ L with v(l) 6= v; u(θv, oc) = 0 for all c ∈ C. The goal of the
automated mechanism design instance is G = |Θ| + |C|−K

|Θ| , where K is the goal of the MINSAT
instance. We show the instances are equivalent. First, suppose there is a solution to the MINSAT
instance. Let the assignment of truth values to the variables in this solution be given by the function
f : V → L (where v(f(v)) = v for all v ∈ V). Then, for every v ∈ V , let o(θv) = of(v) and
π(θv) = |Θ|. For every c ∈ C, let o(θc) = oc; let π(θc) = |Θ|+1 if c is not satisfied in the MINSAT
solution, and π(θc) = |Θ| if c is satisfied. It is straightforward to check that the IR constraint is
satisfied. We now check that the agent has no incentive to misreport. If the agent’s type is some
θv, then any other report will give it an outcome that is no better, for a payment that is no less, so
it has no incentive to misreport. If the agent’s type is some θc where c is a satisfied clause, again,
any other report will give it an outcome that is no better, for a payment that is no less, so it has
no incentive to misreport. The final case to check is where the agent’s type is some θc where c is
an unsatisfied clause. In this case, we observe that for none of the types, reporting it leads to an
outcome ol for a literal l ∈ c, precisely because the clause is not satisfied in the MINSAT instance.
Because also, no type besides θc leads to the outcome oc, reporting any other type will give an
outcome with utility 0, while still forcing a payment of at least |Θ| from the agent. Clearly the agent
is better off reporting truthfully, for a total utility of 0. This establishes that the agent never has an
incentive to misreport. Finally, we show that the goal is reached. If s is the number of satisfied
clauses in the MINSAT solution (so that s ≤ K), the expected payment from this mechanism is
|V ||Θ|+s|Θ|+(|C|−s)(|Θ|+1)

|Θ| ≥ |V ||Θ|+K|Θ|+(|C|−K)(|Θ|+1)
|Θ| = |Θ|+ |C|−K

|Θ| = G. So there is a solution
to the automated mechanism design instance.

Now suppose there is a solution to the automated mechanism design instance, given by an
outcome function o and a payment function π. First, suppose there is some v ∈ V such that
o(θv) /∈ {o+v, o−v}. Then the utility that the agent derives from the given outcome for this type
is 0, and hence, by IR, no payment can be extracted from the agent for this type. Because, again
by IR, the maximum payment that can be extracted for any other type is |Θ| + 1, it follows that
the maximum expected payment that could be obtained is at most (|Θ|−1)(|Θ|+1)

|Θ| < |Θ| < G,
contradicting that this is a solution to the automated mechanism design instance. It follows that in
the solution to the automated mechanism design instance, for every v ∈ V , o(θv) ∈ {o+v, o−v}. We

134 CHAPTER 6. AUTOMATED MECHANISM DESIGN

can interpret this as an assignment of truth values to the variables: v is set to true if o(θv) = o+v,
and to false if o(θv) = o−v. We claim this assignment is a solution to the MINSAT instance. By the
IR constraint, the maximum payment we can extract from any type θv is |Θ|. Because there can be
no incentives for the agent to report falsely, for any clause c satisfied by the given assignment, the
maximum payment we can extract for the corresponding type θc is |Θ|. (For if we extracted more
from this type, the agent’s utility in this case would be less than 1; and if v is the variable satisfying
c in the assignment, so that o(θv) = ol where l occurs in c, then the agent would be better off
reporting θv instead of the truthful report θc, to get an outcome worth |Θ| + 1 to it while having to
pay at most |Θ|.) Finally, for any unsatisfied clause c, by the IR constraint, the maximum payment
we can extract for the corresponding type θc is |Θ|+1. It follows that the expected payment from our
mechanism is at most V |Θ|+s|Θ|+(|C|−s)(|Θ|+1)

Θ , where s is the number of satisfied clauses. Because
our mechanism achieves the goal, it follows that V |Θ|+s|Θ|+(|C|−s)(|Θ|+1)

Θ ≥ G, which by simple
algebraic manipulations is equivalent to s ≤ K. So there is a solution to the MINSAT instance.

Finally, we study the case where the designer is self-interested and is not interested in payments
made (that is, the objective is some function g : O → R). In this case, if the designer is allowed to
use payments, then the designer can always choose her most preferred outcome by giving the agents
an amount large enough to compensate them for the choice of this outcome, thereby not breaking
the IR constraint. However, the case where the designer is not allowed to use payments is more
complex, as the following theorem shows:

Theorem 40 The AMD problem for designing deterministic mechanisms without payments is NP-
complete, even when the designer is self-interested (but faces an IR constraint), there is only a single
agent, and the probability distribution over Θ is uniform. (Membership in NP is guaranteed only if
the number of agents is constant.)

Proof: The proof of membership in NP for a constant number of agents is similar to previous
proofs. To show NP-hardness, we reduce an arbitrary MINSAT instance to the following automated
mechanism design instance. Let the agent’s type set be Θ = {θc : c ∈ C} ∪ {θv : v ∈ V }, where
C is the set of clauses in the MINSAT instance, and V is the set of variables. Let the probability
distribution over these types be uniform. Let the outcome set be O = {o0} ∪ {oc : c ∈ C} ∪ {ol :
l ∈ L} ∪ {o∗}, where L is the set of literals, that is, L = {+v : v ∈ V } ∪ {−v : v ∈ V }. Let the
notation v(l) = v denote that v is the variable corresponding to the literal l, that is, l ∈ {+v,−v}.
Let l ∈ c denote that the literal l occurs in clause c. Then, let the agent’s utility function be given
by u(θc, ol) = 2 for all l ∈ L with l ∈ c; u(θc, ol) = −1 for all l ∈ L with l /∈ c; u(θc, oc) = 2;
u(θc, oc′) = −1 for all c′ ∈ C with c 6= c′; u(θc, o∗) = 1; u(θv, ol) = 1 for all l ∈ L with v(l) = v;
u(θv, ol) = −1 for all l ∈ L with v(l) 6= v; u(θv, oc) = −1 for all c ∈ C; u(θv, o∗) = −1. Let the
designer’s objective function be given by g(o∗) = |Θ| + 1; g(ol) = |Θ| for all l ∈ L; g(oc) = |Θ|
for all c ∈ C. The goal of the automated mechanism design instance is G = |Θ| + |C|−K

|Θ| , where
K is the goal of the MINSAT instance. We show the instances are equivalent. First, suppose there
is a solution to the MINSAT instance. Let the assignment of truth values to the variables in this
solution be given by the function f : V → L (where v(f(v)) = v for all v ∈ V). Then, for
every v ∈ V , let o(θv) = of(v). For every c ∈ C that is satisfied in the MINSAT solution, let

6.4. LINEAR AND MIXED INTEGER PROGRAMMING APPROACHES 135

o(θc) = oc; for every unsatisfied c ∈ C, let o(θc) = o∗. It is straightforward to check that the IR
constraint is satisfied. We now check that the agent has no incentive to misreport. If the agent’s
type is some θv, it is getting the maximum utility for that type, so it has no incentive to misreport.
If the agent’s type is some θc where c is a satisfied clause, again, it is getting the maximum utility
for that type, so it has no incentive to misreport. The final case to check is where the agent’s type
is some θc where c is an unsatisfied clause. In this case, we observe that for none of the types,
reporting it leads to an outcome ol for a literal l ∈ c, precisely because the clause is not satisfied
in the MINSAT instance. Because also, no type leads to the outcome oc, there is no outcome that
the mechanism ever selects that would give the agent utility greater than 1 for type θc, and hence
the agent has no incentive to report falsely. This establishes that the agent never has an incentive to
misreport. Finally, we show that the goal is reached. If s is the number of satisfied clauses in the
MINSAT solution (so that s ≤ K), then the expected value of the designer’s objective function is
|V ||Θ|+s|Θ|+(|C|−s)(|Θ|+1)

|Θ| ≥ |V ||Θ|+K|Θ|+(|C|−K)(|Θ|+1)
|Θ| = |Θ|+ |C|−K

|Θ| = G. So there is a solution
to the automated mechanism design instance.

Now suppose there is a solution to the automated mechanism design instance, given by an
outcome function o. First, suppose there is some v ∈ V such that o(θv) /∈ {o+v, o−v}. The only
other outcome that the mechanism is allowed to choose under the IR constraint is o0. This has an
objective value of 0, and because the highest value the objective function ever takes is |Θ| + 1,
it follows that the maximum expected value of the objective function that could be obtained is at
most (|Θ|−1)(|Θ|+1)|Θ| < |Θ| < G, contradicting that this is a solution to the automated mechanism
design instance. It follows that in the solution to the automated mechanism design instance, for
every v ∈ V , o(θv) ∈ {o+v, o−v}. We can interpret this as an assignment of truth values to the
variables: v is set to true if o(θv) = o+v, and to false if o(θv) = o−v. We claim this assignment is a
solution to the MINSAT instance. By the above, for any type θv, the value of the objective function
in this mechanism will be |Θ|. For any clause c satisfied by the given assignment, the value of the
objective function in the case where the agent reports type θc will be at most |Θ|. (This is because
we cannot choose the outcome o∗ for such a type, as in this case the agent would have an incentive
to report θv instead, where v is the variable satisfying c in the assignment (so that o(θv) = ol where
l occurs in c).) Finally, for any unsatisfied clause c, the maximum value the objective function
can take in the case where the agent reports type θc is |Θ| + 1, simply because this is the largest
value the function ever takes. It follows that the expected value of the objective function for our
mechanism is at most V |Θ|+s|Θ|+(|C|−s)(|Θ|+1)

Θ , where s is the number of satisfied clauses. Because
our mechanism achieves the goal, it follows that V |Θ|+s|Θ|+(|C|−s)(|Θ|+1)

Θ ≥ G, which by simple
algebraic manipulations is equivalent to s ≤ K. So there is a solution to the MINSAT instance.

6.4 Linear and mixed integer programming approaches

In this section, we describe how the problem of designing an optimal randomized mechanism can
be cast as a linear programming problem. As we will show, the size of the linear program is ex-
ponential only in the number of agents, and because linear programs can be solved in polynomial

136 CHAPTER 6. AUTOMATED MECHANISM DESIGN

time [Khachiyan, 1979], this implies that the problem of designing an optimal6 randomized mech-
anism is in P if the number of agents is a constant.

Theorem 41 With a constant number of agents, the optimal randomized mechanism can be found
in polynomial time using linear programming, both with and without payments, both for ex post and
ex interim IR, and both for implementation in dominant strategies and for implementation in Bayes-
Nash equilibrium—even if the types are correlated (that is, an agent’s type tells him something
about the other agents’ types).

Proof: Because linear programs can be solved in polynomial time, all we need to show is that
the number of variables and equations in our program is polynomial for any constant number of
agents—that is, exponential only in n. Throughout, for purposes of determining the size of the
linear program, let T = maxi{|Θi|}. The variables of our linear program will be the probabilities
(p(θ1, θ2, . . . , θn))(o) (at most T n|O| variables) and the payments πi(θ1, θ2, . . . , θn) (at most nT n

variables). (We show the linear program for the case where payments are possible; the case without
payments is easily obtained from this by simply omitting all the payment variables in the program,
or by adding additional constraints forcing the payments to be 0.)

First, we show the IR constraints. For ex post IR, we add the following (at most nT n) constraints
to the LP:

• For every i ∈ {1, 2, . . . , n}, and for every (θ1, θ2, . . . , θn) ∈ Θ1 ×Θ2 × . . .×Θn, we add

(
∑

o∈O
(p(θ1, θ2, . . . , θn))(o)u(θi, o))− πi(θ1, θ2, . . . , θn) ≥ 0.

For ex interim IR, we add the following (at most nT) constraints to the LP:

• For every i ∈ {1, 2, . . . , n}, for every θi ∈ Θi, we add
∑

θ1,...,θn

γ(θ1, . . . , θn|θi)((
∑

o∈O
(p(θ1, θ2, . . . , θn))(o)u(θi, o))− πi(θ1, θ2, . . . , θn)) ≥ 0.

Now, we show the solution concept constraints. For implementation in dominant strategies, we
add the following (at most nT n+1) constraints to the LP:
• For every i ∈ {1, 2, . . . , n}, for every

(θ1, θ2, . . . , θi, . . . , θn) ∈ Θ1 × Θ2 × . . . × Θn, and for every alternative type report θ̂i ∈ Θi, we
add the constraint

(
∑

o∈O
(p(θ1, θ2, . . . , θi, . . . , θn))(o)u(θi, o))− πi(θ1, θ2, . . . , θi, . . . , θn) ≥

(
∑

o∈O
(p(θ1, θ2, . . . , θ̂i, . . . , θn))(o)u(θi, o))− πi(θ1, θ2, . . . , θ̂i, . . . , θn).

Finally, for implementation in Bayes-Nash equilibrium, we add the following (at most nT 2)
constraints to the LP:

6Since linear programs allow for an objective, we can search for the optimal mechanism rather than only solve the
decision variant (does a mechanism with objective value at least G exist?) of the problem.

6.5. INITIAL APPLICATIONS 137

• For every i ∈ {1, 2, ..., n}, for every θi ∈ Θi, and for every alternative type report θ̂i ∈ Θi,
we add the constraint
∑

θ1,...,θn

γ(θ1, ..., θn|θi)((
∑

o∈O
(p(θ1, θ2, ..., θi, ..., θn))(o)u(θi, o))− πi(θ1, θ2, ..., θi, ..., θn)) ≥

∑

θ1,...,θn

γ(θ1, ..., θn|θi)((
∑

o∈O
(p(θ1, θ2, ..., θ̂i, ..., θn))(o)u(θi, o))− πi(θ1, θ2, ..., θ̂i, ..., θn)).

All that is left to do is to give the expression the designer is seeking to maximize, which is:

•
∑

θ1,...,θn

γ(θ1, ..., θn)((
∑

o∈O
(p(θ1, θ2, ..., θi, ..., θn))(o)g(o)) +

n
∑

i=1
πi(θ1, θ2, ..., θn)).

As we indicated, the number of variables and constraints is exponential only in n, and hence the
linear program is of polynomial size for constant numbers of agents. Thus the problem is solvable
in polynomial time.

By forcing all the probability variables to be either 0 or 1, thereby changing the linear program
into a mixed integer program, we can solve for the optimal deterministic mechanism. (We note
that solving a mixed integer program is NP-complete.) Our general-purpose automated mechanism
design solver consists of running CPLEX (a commercial solver) on these linear or mixed integer
programs.

6.5 Initial applications

The only example application that we have seen so far is the divorce settlement setting from Sec-
tion 6.2. In this section, we apply AMD to some domains that are more commonly studied in
mechanism design: optimal auctions and mechanisms for public goods.

6.5.1 Optimal auctions

In this subsection we show how AMD can be used to design auctions that maximize the seller’s
expected revenue (so-called optimal auctions). In many auction settings, the seller would like to
design the rules of the auction to accomplish this. However, as we briefly mentioned in Chapter 4,
in general settings this is a known difficult mechanism design problem; for one, it is much more
difficult than designing a mechanism that allocates the goods efficiently (among bidders with quasi-
linear preferences, ex post efficiency and IR can be accomplished in dominant strategies using the
VCG mechanism).

We first study auctioning off a single good, and show that AMD reinvents a known landmark
optimal auction mechanism, the Myerson auction, for the specific instance that we study. (Of course,
it does not derive the general form of the Myerson auction, which can be applied to any single-
item instance: AMD necessarily only solves the instance at hand.) We then move to multi-item
(combinatorial) auctions, where the optimal auction has been unknown in the literature to date. We
show that AMD can design optimal auctions for this setting as well.

138 CHAPTER 6. AUTOMATED MECHANISM DESIGN

An optimal 2-bidder, 1-item auction

We first show how automated mechanism design can rederive known results in optimal single-item
auction design. Say there is one item for sale. The auctioneer can award it to any bidder, or not
award it (and say the auctioneer’s valuation for the good is 0). There are two bidders, 1 and 2. For
each of them, their distribution of valuations is uniform over {0, 0.25, 0.5, 0.75, 1}.

In designing the auction automatically, we required ex-interim IR and implementation in Bayes-
Nash equilibrium. Randomization was allowed (although in this setting, it turned out that the prob-
abilities were all 0 or 1). The allocation rule of the mechanism generated by the solver is as follows.
If both bid below 0.5, do not award the item; otherwise, give the item to the highest bidder (a spe-
cific one of them in the case of a tie). This is effectively7 the celebrated Myerson auction [Myerson,
1981] (although the Myerson auction was originally derived for a continuous valuation space). So,
AMD quickly reinvented a landmark mechanism from 1981. (Although it should be noted that it
invented it for a special case, and did not derive the general characterization. Also, it did not invent
the question of optimal auction design.)

Multi-item (combinatorial) auctions

We now move to combinatorial auctions where there are multiple goods for sale. The design of
a mechanism for this setting that maximizes the seller’s expected revenue is a recognized open
research problem [Avery and Hendershott, 2000; Armstrong, 2000; Vohra, 2001]. The problem is
open even if there are only two goods for sale. (The two-good case with a very special form of
complementarity and no substitutability has been solved recently [Armstrong, 2000].) We show
that AMD can be used to generate optimal combinatorial auctions.

In our first combinatorial auction example, two items, A and B, are for sale. The auctioneer can
award each item to any bidder, or not award it (and the auctioneer’s valuation is 0). There are two
bidders, 1 and 2, each of whom has four possible, equally likely types: LL, HL, LH , and HH .
The type indicates whether each item is strongly desired or not; for instance, the type HL indicates
that the bidder strongly desires the first item, but not the second. Getting an item that is strongly
desired gives utility 2; getting one that is not strongly desired gives utility 1. The utilities derived
from the items are simply additive (no substitution or complementarity effects), with the exception
of the case where the bidder has the type HH . In this case there is a complementarity bonus of 2
for getting both items (thus, the total utility of getting both items is 6). (One way to interpret this is
as follows: a bidder will sell off any item it wins and does not strongly desire, on a market where it
is a price taker, so that there are no substitution or complementarity effects with such an item.)

In designing the auction, we required ex-interim IR and implementation in Bayes-Nash equilib-
rium. Randomization was allowed (although in this setting, it turned out that the probabilities were
all 0 or 1). The objective to maximize was the expected payments from the bidders to the seller.
The mechanism generated by the solver has the following allocation rule: 1. If one bidder bid LL,
then the other bidder gets all the items he bid high on, and all the other items (that both bid low on)
are not awarded. 2. If exactly one bidder bid HH , that bidder gets both items. If both bid HH ,
bidder 1 gets both items. 3. If both bidders bid high on only one item, and they did not bid high on

7The payment rule generated is slightly different, because CPLEX chooses to distribute the payments slightly differ-
ently across different type vectors.

6.5. INITIAL APPLICATIONS 139

the same item, each bidder gets his preferred item. 4. If both bidders bid high on only one item, and
they bid high on the same item, bidder 2 gets the preferred item, and bidder 1 gets the other item.

LL LH HL HH
LL 0, 0 0, 2 2, 0 2, 2
LH 0, 1 1, 2 2, 1 2, 2
HL 1, 0 1, 2 2, 1 2, 2
HH 1, 1 1, 1 1, 1 1, 1

The allocation rule in the optimal combinatorial auction. The row indicates bidder 1’s type, the
column bidder 2’s type. i, j indicates that item A goes to bidder i, and item B to bidder j. (0

means the item is not awarded to anyone.)

It is interesting to observe that suboptimal allocations occur only when one bidder bids LL and
the other other does not bid HH. All the inefficiency stems from not awarding items, never from
allocating items to a suboptimal bidder.

The expected revenue from the mechanism is 3.9375. For comparison, the expected revenue
from the VCG mechanism is only 2.6875. It is interesting to view this in light of a recent result that
the VCG mechanism is asymptotically (as the number of bidders goes to infinity) optimal in multi-
item auctions, that is, it maximizes revenue in the limit [Monderer and Tennenholtz, 1999].8 Appar-
ently the auction will need to get much bigger (have more bidders) before no significant fraction of
the revenue is lost by using the VCG mechanism. (Of course, this is only a single instance—future
research may determine how much revenue is typically lost by the VCG mechanism for instances
of this size, as well as determine how this changes when the instances become somewhat larger.)

We now move on to designing a bigger auction, again with 2 items, but now with 3 bidders (for
a total of 16 possible allocations of items) and a bigger type space. Again, the bidders can have a
high or low type for each item, resulting in a utility for that item alone of 3 or 1, respectively; part
of their type now also includes whether the items have complementarity or substitutability to them,
resulting in a total of 8 types per bidder—that is, 83 = 512 type vectors (possible joint preference
revelations by the bidders). In the case where the items have substitutability, the utility of getting
both items is the sum of the items’ individual values, minus 0.2 times the value of the lesser valued
item.9 In the case of complementarity, 0.2 times the value of the lesser-valued item is added.

This is the only instance in this section where CPLEX took more than 0.00 seconds to solve
the instance. (It took 5.90 seconds.) The optimal auction generated has an expected revenue of
5.434. The allocation rule generated (an 8x8x8 table) is too large to present, but we point out some
interesting properties of the optimal auction generated nonetheless:

1. Sometimes, items are again not awarded, for example, when two bidders report a low valua-
tion for both items and the remaining bidder does not report a high valuation on both items;

8This result is particularly easy to prove in a discretized setting such as the one we are considering. The following
sketches the proof. As the number of bidders grows, it becomes increasingly likely that for each winning bid, there is
another submitted bid that is exactly identical, but not accepted. If this is the case, the VCG payment for the winning
bid is exactly the value of that bid, and thus the VCG mechanism extracts the maximum possible payment. (This is also
roughly the line of reasoning taken in the more general result [Monderer and Tennenholtz, 1999].)

9Subtracting a fraction from the lesser valued item guarantees free disposal, i.e. additional items cannot make a bidder
worse off.

140 CHAPTER 6. AUTOMATED MECHANISM DESIGN

2. Randomization now does occur, for instance sometimes (but not always) when one item is
valued lowly by everyone and two of the three value the other item highly (the randomization
is over which of the two gets the desired item);

3. The optimal auction takes the complementarity and substitutability into account, for instance
by doing the following. When one bidder bids high on both items and the other two each bid
high on one item (not the same one), then the mechanism awards the items to the first bidder
if that bidder revealed complementarity, but to the other bidders if the first bidder revealed
substitutability. (Each one gets his/her desired item.)

It turns out, however, that the optimal deterministic mechanism generated for this instance has
the same expected revenue (5.434). Thus, one may wonder if randomization is ever necessary to
create optimal combinatorial auctions. The following example shows that there are indeed instances
of the optimal combinatorial auction design problem where randomized mechanisms can perform
strictly better than any deterministic mechanism.

In this example, there are two items A and B for sale, and there is only a single bidder (so that
it does not matter which solution concept and which IR notion we use). There are three types: type
α (occurring with probability 0.3) indicates that the bidder has a utility of 1 for receiving either
{A} or {A,B}, and 0 otherwise; type β (occurring with probability 0.3) indicates that the bidder
has a utility of 1 for receiving either {B} or {A,B}, and 0 otherwise; and type αβ (occurring
with probability 0.4) indicates that the bidder has a utility of 0.75 for receiving either {A}, {B}, or
{A,B}, and 0 otherwise.

The optimal randomized mechanism generated by the solver allocates {A} to the bidder if the
bidder reports α; {B} if the bidder reports β; and {A} with probability 0.75, and {B} with proba-
bility 0.25, if the bidder reports αβ. The payment in each case is the agent’s entire valuation (1 for
types α and β, and 0.75 for type αβ). The resulting expected revenue is 0.9.

By contrast, the optimal deterministic mechanism generated by the solver allocates {A} to the
bidder if the bidder reports α; {A,B} if the bidder reports β; and {A} if the bidder reports αβ. The
payment is 0.75 for type α, 1 for type β, and 0.75 for type αβ. The resulting expected revenue is
0.825.

This example demonstrates how AMD can be used to disprove conjectures in mechanism de-
sign: the conjecture that one can restrict attention to deterministic mechanisms in the design of
optimal combinatorial auctions is disproved by an example where the optimal randomized mecha-
nism produced by the solver is strictly better than the optimal deterministic one.

6.5.2 Public goods problems

As another example application domain, we now turn to public good problems. A public good is a
good from which many agents can benefit simultaneously; the good is said to be nonexcludable if
we cannot prevent any agents from obtaining this benefit, given that we produce the good. Examples
of nonexcludable public goods include clean air, national defense, pure research, etc.

A typical mechanism design problem that arises is that a certain amount of money is required
to construct or acquire the (nonexcludable) public good, and this money must be collected from the
agents that may benefit from it. However, how much the good is worth to each agent is information

6.5. INITIAL APPLICATIONS 141

that is private to that agent, and we cannot obtain a larger payment from an agent than what the agent
claims the good is worth to him (an individual rationality constraint). This leads to the potential
problem of free riders who report very low values for the good in the hope that other agents will
value the good enough for it to still be produced. Formally, every agent i has a type vi (the value of
the good to him), and the mechanism decides whether the good is produced, as well as each agent’s
payment πi. If the good is produced, we must have

∑

i
πi ≥ c, where c is the cost of producing

the good. Results similar to the Myerson-Satterthwaite impossibility theorem can be proved here to
show that even in quite simple settings, there is no mechanism that is ex post efficient, ex post budget
balanced, ex-interim individually rational, and BNE incentive-compatible. In fact, Theorem 36 from
Chapter 5 shows exactly this.

The advantage of applying AMD in this setting is that we do not desire to design a mechanism
for general (quasilinear) preferences, but merely for the specific mechanism design problem instance
at hand. In some settings this may allow one to circumvent the impossibility entirely, and in all
settings it minimizes the pain entailed by the impossibility.

Building a bridge

Two agents are deciding whether to build a good that will benefit both (say, a bridge). The bridge, if
it is to be built, must be financed by the payments made by the agents. Building the bridge will cost
6. The agents have the following type distribution: with probability .4, agent 1 will have a low type
and value the bridge at 1. With probability .6, agent 1 will have a high type and value the bridge at
10. Agent 2 has a low type with probability .6 and value the bridge at 2; with probability .4, agent
2 will have a high type and value the bridge at 11. (Thus, agent 2 cares for the bridge more in both
cases, but agent 1 is more likely to have a high type.)

We used AMD to design a randomized, dominant-strategies incentive compatible, ex post IR
mechanism that is as efficient as possible—taking into account unnecessary payments (“money
burning”) as a loss in efficiency. The optimal mechanism generated by our AMD implementation
has the following outcome function (here the entries of the matrix indicate the probability of building
the bridge in each case):

Low High
Low 0 .67
High 1 1

The payment function is as follows (here a, b gives the payments of agents 1 and 2, respectively):

Low High
Low 0, 0 .67, 3.33
High 4, 2 4, 2

The payments in the case where agent 1 bids low but agent 2 bids high are the expected payments
(as we argued before, risk-neutral agents only care about this); the agents will need to pay more than
this when the good is actually built, but can pay less when it is not. (The constraints on the expected
payments in the linear program are set so that the good can always be afforded when it is built.)

142 CHAPTER 6. AUTOMATED MECHANISM DESIGN

It is easy to see that no money is burned: all the money the agents pay goes towards building the
bridge. However, we do not always build the bridge when this is socially optimal—namely, when
the second agent has a high type (which is enough to justify building the bridge) we do not always
build the bridge.

If we relax our solution concept to implementation in Bayes-Nash equilibrium, however, we get
a mechanism with the following outcome function:

Low High
Low 0 1
High 1 1

The payment function is now as follows:

Low High
Low 0, 0 0, 6
High 4, 2 .67, 5.33

Again, no money is burned, but now also, the optimal outcome is always chosen. Thus, with
Bayes-Nash equilibrium incentive compatibility, our mechanism achieves everything we hope for in
this instance—even though the impossibility result shows that this is not possible for all instances.

Building a bridge and/or a boat

Now let us move to the more complex public goods setting where two goods could be built: a bridge
and a boat. There are 4 different outcomes corresponding to which goods are built: None, Boat,
Bridge, Boat and Bridge. The boat costs 1 to build, the bridge 2, and building both thus costs 3.

The two agents each have one of four different types: None, Boat Only, Bridge Only, Boat or
Bridge. These types indicate which of the two possible goods would be helpful to the agent (for
instance, maybe one agent would only be helped by a bridge because this agent wants to take the
car to work, which will not fit on the boat). All types are equally likely; if something is built which
is useful to a agent (given that agent’s type), the agent gets a utility of 2, otherwise 0.

We used AMD to design the optimal randomized dominant-strategy mechanism that is ex post
IR, and as ex post efficient as possible—taking into account money burning as a loss in efficiency.
The mechanism has the following outcome function, where a vector (a, b, c, d) indicates the proba-
bilities for None, Boat, Bridge, Boat and Bridge, respectively.

None Boat Bridge Either
None (1,0,0,0) (0,1,0,0) (1,0,0,0) (0,1,0,0)
Boat (.5,.5,0.0) (0,1,0,0) (0,.5,0,.5) (0,1,0,0)
Bridge (1,0,0,0) (0,1,0,0) (0,0,1,0) (0,0,1,0)
Either (.5,.5,0.0) (0,1,0,0) (0,0,1,0) (0,1,0,0)

The (expected) payment function is as follows:

6.6. SCALABILITY EXPERIMENTS 143

None Boat Bridge Either
None 0,0 0,1 0,0 0,1
Boat .5,0 0,1 1,1 0,1
Bridge 0,0 0,1 1,1 1,1
Either .5,0 0,1 1,1 0,1

Again, no money is burned, but we do not always build the public goods that are socially optimal—
for example, sometimes nothing is built although the boat would have been useful to someone.

6.6 Scalability experiments

To assess the scalability of the automated mechanism design approach in general, we generated
random instances of the automated mechanism design problem. Each agent, for each of its types, re-
ceived a utility for each outcome that was uniformly randomly chosen from the integers 0, 1, 2, . . . , 99.
(All random draws were independent.) Real-world automated mechanism design instances are
likely to be more structured than this (for example, in allocation problems, if one agent is happy
with an outcome, this is because it was allocated a certain item that it wanted, and thus other agents
who wanted the item will be less happy); such special structure can typically be taken advantage of
in computing the optimal mechanism, even by nonspecialized algorithms. For instance, a random
instance with 3 agents, 16 outcomes, 8 types per agent, with payment maximization as its goal,
ex-interim IR, implementation in Bayes-Nash equilibrium, where randomization is allowed, takes
14.28 seconds to solve on average in our implementation. The time required to compute the last
optimal combinatorial auction from Section 6.5, which had exactly the same parameters (but much
more structure in the utility functions), compares (somewhat) favorably to this at 5.90 seconds.

We are now ready to present the scalability results. For every one of our experiments, we con-
sider both implementation in dominant strategies and implementation in Bayes-Nash equilibrium.
We also consider both the problem of designing a deterministic mechanism and that of designing
a randomized mechanism. All the other variables that are not under discussion in a particular ex-
periment are fixed at a default value (4 agents, 4 outcomes, 4 types per agent, no IR constraint, no
payments, social welfare is the objective); these default values are chosen to make the problem hard
enough for its runtime to be interesting. Experiments taking longer than 6 hours were cancelled,
as well as experiments where the LP size was greater than 400MB. CPLEX does not provide run-
time information more detailed than centiseconds, which is why we do not give the results with a
constant number of significant digits, but rather all the digits we have.

The next table shows that the runtime increases fairly sharply with the number of agents. Also
(as will be confirmed by all the later experiments), implementation in dominant strategies is harder
than implementation in BNE, and designing deterministic mechanisms is harder than designing
randomized mechanisms. (The latter part is consistent with the transition from NP-completeness to
solvability in polynomial time by allowing for randomness in the mechanism (Sections 6.3 and 6.4).)

144 CHAPTER 6. AUTOMATED MECHANISM DESIGN

#agents D/DSE R/DSE D/BNE R/BNE
2 .02 .00 .00 .00
3 .04 .00 .05 .01
4 8.32 1.32 1.68 .06
5 709.85 48.19 10.47 .52

The time (in seconds) required to solve randomly generated AMD instances for different numbers
of agents, for deterministic (D) or randomized (R) mechanisms, with implementation in dominant
strategies (DSE) or Bayes-Nash equilibrium (BNE). All experiments had 4 outcomes and 4 types
per agent, required no IR constraint, did not allow for payments, and had social welfare as the

objective.

The next table shows that the runtime tends to increase with the number of outcomes, but not at all
sharply.

#outcomes D/DSE R/DSE D/BNE R/BNE
2 .07 .07 .04 .03
3 .36 .08 .46 .05
4 8.32 1.32 1.68 .06
5 10.91 .59 .69 .07

The next table shows that the runtime increases fairly sharply with the number of types per agent.

#types D/DSE R/DSE D/BNE R/BNE
2 .00 .00 .00 .00
3 .04 .01 .30 .01
4 8.32 1.32 1.68 .06
5 563.73 14.33 36.60 .21

Because the R/BNE case scales reasonably well in each setting, we increased the numbers of agents,
outcomes, and types further for this case to test the limits of our implementation. Our initial imple-
mentation requires the linear program to be written out explicitly, and thus space eventually became
the bottleneck for scaling in agents and types. (“*” indicates that the LP size exceeded 400MB.)
Mature techniques exist for linear programming when the LP is too large to write down, and future
implementations could make use of these techniques.

agents outcomes types
6 4.39 .07 .88
7 33.32 .07 1.91
8 * .09 4.52
10 * .11 22.05
12 * .13 67.74
14 * .13 *
100 * 1.56 *

6.7. AN ALGORITHM FOR SINGLE-AGENT SETTINGS 145

The next table shows that the impact of IR constraints on runtime is entirely negligible.

IR constraint D/DSE R/DSE D/BNE R/BNE
None 8.32 1.32 1.68 .06
Ex post 8.20 1.38 1.67 .12
Ex interim 8.11 1.42 1.65 .11

The next table studies the effects of allowing for payments and changing the objective. Allowing
for payments (without taking the payments into account) in social welfare maximization reduces
the runtime. This appears consistent with the fact that for this setting, a general (and easy-to-
compute) mechanism exists that always obtains the maximum social welfare—the VCG mechanism.
However, this speedup disappears when we start taking the payments into account. Interestingly,
payment maximization appears to be much harder than social welfare maximization. In particular,
in one case (designing a deterministic mechanism without randomization), an optimal mechanism
had not been constructed after 6 hours!

Objective D/DSE R/DSE D/BNE R/BNE
SW (1) 8.20 1.38 1.67 .12
SW (2) .41 .14 .92 .10
SW (3) 7.98 .51 4.44 .10
π - 1.89 84.66 3.47

SW=social welfare (1) without payments, (2) with payments that are not taken into account in
social welfare calculations, (3) with payments that are taken into account in social welfare

calculations; π=payment maximization.

The sizes of the instances that we can solve may not appear very impressive when compared
with the sizes of (for instance) combinatorial auctions currently being studied in the literature. While
this is certainly true, we emphasize that 1. We are studying a much more difficult problem than the
auction clearing problem: we are designing the mechanism, rather than executing it; 2. AMD is still
in its infancy, and it is likely that future (possibly approximate) approaches will scale to much larger
instances; and 3. Although many real-world instances are very large, there are also many small
ones. Moreover, the “small” instances may concern equally large dollar values as the large ones.
For example, selling two masterpieces by Picasso in a combinatorial auction could create revenue
comparable to that of selling a million plane tickets in a combinatorial auction.

6.7 An algorithm for single-agent settings

The definitions from Section 6.1 simplify significantly when applied to the setting where a deter-
ministic mechanism without payments must be designed, with a single type-reporting agent. For
one, the different possible IC (truthfulness) constraints differ only in what a type-reporting agent is
assumed to know about other type-reporting agents’ preferences and reports. Because in this set-
ting, there are no other type-reporting agents, the different IC constraints coincide. The same is true
for the IR (participation) constraints. We also do not need distributions over outcomes, or payment
functions. The result is the following formal definition for our special case.

146 CHAPTER 6. AUTOMATED MECHANISM DESIGN

Definition 27 (AUTOMATED-MECHANISM-DESIGN (AMD)) We are given a set of outcomes
O, and a set of types Θ for the agent together with a probability distribution p over these types.
Additionally we are given a utility function for the agent, u : Θ×O → R, and an objective function
for the designer, g : Θ × O → R. We are asked to find an outcome function o : Θ → O (a
deterministic mechanism without payments) such that:

1. For every θ, θ̂ ∈ Θ, u(θ, o(θ)) ≥ u(θ, o(θ̂)) (the IC constraint).

2. If there is an IR constraint, for every θ ∈ Θ, u(θ, o(θ)) ≥ 0. (In this case there typically also
is a default outcome o0 with u(θ, o0) = 0 for all θ ∈ Θ.10)

3. Subject to the previous constraints, the mechanism maximizes
∑

θ∈Θ
p(θ)g(θ, o(θ)).

We note that by Theorem 37, even this specialized problem is NP-complete (even without the IR
constraint, and even when the objective function is a social welfare function including another agent
that does not report a type).

6.7.1 Application: One-on-one bartering

As an interlude, we first present an application. Consider the situation where two agents each have
an initial endowment of goods. Each agent has a valuation for every subset of the m goods that
the agents have together. It is possible that both agents can become better off as a result of trade.
Suppose, however, that the agents cannot make any form of payment; all they can do is swap goods.
This is known as bartering. Additionally, suppose that one agent (agent 1) is in the position of
dictating the rules of the bartering process. Agent 1 can credibly say to agent 2, “we will barter
by my rules, or not at all.” This places agent 1 in the position of the mechanism designer, and
corresponds to the following AMD problem. The set of outcomes is the set of all allocations of the
goods (there are 2m of them). Agent 2 is to report his preferences over the goods (the valuation
that agent has for each subset), and on the basis of this report an outcome is chosen. This outcome
function, which is selected by agent 1 beforehand, must be incentive compatible so that agent 2 has
no incentive to misreport. Also, it must be individually rational, or agent 2 simply will not trade.11

Under these constraints, agent 1 wishes to make the expected value of her own allocation under
the mechanism as large as possible. The revelation principle justifies that restricting agent 1 to this
approach comes at no loss to that agent.

Automatically generated mechanisms for this setting are likely to be useful in barter-based elec-
tronic marketplaces, such as mybarterclub.com, Recipco, and National Trade Banc.

We now return to computational aspects, but we will readdress the bartering problem in our
experiments. We will postpone dealing with IR constraints for a few subections, and then return to
this.

10We can set the utility of the default outcome to 0 without loss of generality, by normalizing the utility function.
(From a decision-theoretic point of view it does not matter how utilities compare across types, because the agent always
knows her own type and will not take utilities for other types into account in making any decision.)

11If agent 1 actually wants to make the rules so that there is no trade for a certain type report, she can simply make the
original allocation the outcome for this type report; so there is no loss to agent 1 in designing the outcome function in
such a way that agent 2 always wishes to participate in the mechanism.

6.7. AN ALGORITHM FOR SINGLE-AGENT SETTINGS 147

6.7.2 Search over subsets of outcomes

In this subsection, we associate with each subset of outcomes a truthful mechanism for that set of
outcomes; we then show that for some subset of outcomes, the truthful mechanism associated with
that subset of outcomes is an optimal mechanism for the setting. Because the mechanism associated
with a subset of outcomes is easy to compute, we can search over subsets of outcomes (of which
there are 2|O|) rather than over all possible outcome functions (of which there are |O||Θ|).12

We first define the outcome function (mechanism) oX associated with a particular subset of the
outcomes.

Definition 28 For a given subset X ⊆ O, let oX(θ) be (the lowest-indexed element of)
argmax{o∈X:(∀o′∈X)u(θ,o)≥u(θ,o′)} g(θ, o). Let v(X) be given by

∑

θ∈Θ
p(θ)g(θ, oX(θ)).

Intuitively, oX(θ) is the outcome we wish to pick for type θ, if we (somehow) know that the set of
other outcomes used in the mechanism is exactly X , and we wish to pick an outcome from X as
well. v(X) is the expected value of the objective function for the mechanism oX , presuming that
the agent reports truthfully. The next lemma shows that indeed, the agent has no incentive to report
falsely.

Lemma 19 For allX ⊆ O, oX is truthful. (Thus, v(X) is indeed the expected value of the objective
function for it.)

Proof: For any pair of types θ1, θ2, we have that oX(θ2) ∈ X because all outcomes ever chosen by
oX are in X; and thus that u(θ1, oX(θ1)) ≥ u(θ1, oX(θ2)), because for any θ, oX(θ) maximizes
u(θ, ·) among outcomes o ∈ X .

The next lemma shows that for any subset X , the mechanism oX dominates all mechanisms that
use exactly the outcomes in X .

Lemma 20 For any X ⊆ O, suppose that o : Θ → X is a truthful mechanism making use only of
outcomes in X , but using each outcome in X at least once—that is, o(Θ) = X . Let its expected
value of the objective function be vo =

∑

θ∈Θ
p(θ)g(θ, o(θ)). Then v(X) ≥ vo.

Proof: For any θ ∈ Θ, we must have that for any o ∈ X , u(θ, o(θ)) ≥ u(θ, o)—because there exists
some θ′ ∈ Θ such that o(θ′) = o, and thus the agent can guarantee herself at least utility u(θ, o) by
reporting θ′. But oX(θ) maximizes g(θ, ·) among such outcomes. Thus, g(θ, oX(θ)) ≥ g(θ, o(θ)).
It follows that v(X) =

∑

θ∈Θ
p(θ)g(θ, oX(θ)) ≥

∑

θ∈Θ
p(θ)g(θ, o(θ)) = vo.

It is not necessarily the case that v(X) = vo for some truthful o making use of all outcomes in X;
for instance, there could be some outcome in X that has both a very low utility value and a very low

12In the case where |O| is bigger than |Θ|, we can restrict ourselves to outcome subsets of size at most |Θ|, making
our approach still more efficient than the straightforward brute search approach. For simplicity of presentation, in this
section we will focus on settings where |Θ| > |O| (as is commonly the case).

148 CHAPTER 6. AUTOMATED MECHANISM DESIGN

objective value. Then oX will not use this outcome, and thereby have a higher expected value of the
objective function than any mechanism that does use it.

We are now ready to present the main theorem of this subsection, which states that the best oX
is indeed an optimal mechanism.

Theorem 42 maxX⊆O v(X) is the maximum expected value of the objective over all mechanisms
(that are deterministic and use no payments). oX is an optimal mechanism (among mechanisms
that are deterministic and use no payments) if X ∈ argmaxX⊆O v(X).

Proof: Consider an optimal truthful mechanism o,13 and let X be the set of all outcomes it uses
(X = o(Θ)). By Lemma 19, oX is truthful and v(X) is the expected value of the objective function
for it. By Lemma 20, we have v(X) ≥ vo where vo is the expected value of the objective function
for o.

6.7.3 A heuristic and its admissibility

We now proceed to define an outcome function that is associated with two disjoint subsets X and
Y of the outcomes; we will use this outcome function to compute an admissible heuristic for our
search problem. The interpretation is as follows. In the process of constructing a mechanism of
the kind described in the previous subsection, we successively label each outcome as “in” or “out”,
depending on whether we wish to include this outcome in the set that the eventual mechanism is
associated with. X consists of the outcomes that we have already decided are “in”; Y consists of
the outcomes that we have already decided are “out”. To get an optimistic view of the mechanisms
we may eventually arrive at from here, we assign to each type the outcome in O − Y that gives
us the highest objective value for that type (the mechanisms certainly will not use any outcome in
Y), under the constraint that this outcome will make that type at least as well off as any outcome in
X (because we have already decided that these are certainly “in”, so we know this constraint must
apply).

Definition 29 For given subsets X,Y ⊆ O, let oX,Y (θ) be (the lowest-indexed element of)
argmaxo∈O−Y :(∀o′∈X)u(θ,o)≥u(θ,o′) g(θ, o). Let v(X,Y) be given by

∑

θ∈Θ
p(θ)g(θ, oX,Y (θ))

Outcome functions of this type do not necessarily constitute truthful mechanisms. (For instance, if
X and Y are both the empty set, then oX,Y will simply choose the objective-maximizing outcome
for each type.) Nevertheless, because we are merely trying to obtain an optimistic estimate, we
compute v(X,Y) as before, presuming the agents will report truthfully. The following theorem
shows that v(X,Y) is indeed admissible.

Theorem 43 For any subsets X,Y ⊆ O, for any Z ⊆ O − X − Y , for any θ ∈ Θ, we have
g(θ, oX,Y (θ)) ≥ g(θ, oX∪Z(θ)); and v(X,Y) ≥ v(X ∪ Z).

13Which, by the revelation principle, is an optimal mechanism.

6.7. AN ALGORITHM FOR SINGLE-AGENT SETTINGS 149

Proof: Using the facts that X ⊆ X ∪ Z and X ∪ Z ⊆ O − Y , we can conclude that {o ∈ X ∪ Z :
(∀o′ ∈ X ∪ Z)u(θ, o) ≥ u(θ, o′)} ⊆ {o ∈ X ∪ Z : (∀o′ ∈ X)u(θ, o) ≥ u(θ, o′)} ⊆ {o ∈ O − Y :
(∀o′ ∈ X)u(θ, o) ≥ u(θ, o)}. It follows that g(θ, oX,Y (θ)) = maxo∈O−Y :(∀o′∈X)u(θ,o)≥u(θ,o′) g(θ, o)
≥ maxo∈X∪Z:(∀o′∈X∪Z)u(θ,o)≥u(θ,o′) g(θ, o) = g(θ, oX∪Z(θ)). Thus v(X,Y) =
∑

θ∈Θ
p(θ)g(θ, oX,Y (θ)) ≥

∑

θ∈Θ
p(θ)g(θ, oX∪Z(θ)) = v(X ∪ Z).

The following theorem shows that conveniently, at a leaf node, where we have decided for every
outcome whether it is in or out, the heuristic value coincides with the value of that outcome set.

Theorem 44 For any X ⊆ O, θ ∈ Θ, we have oX,O−X(θ) = oX(θ) and v(X,O −X) = v(X).

Proof: Immediate using O − (O −X) = X .

6.7.4 The algorithm

We are now ready to present the algorithm.

Basic structure

We first summarize the backbone of our algorithm. A node in our search space is defined by a set of
outcomes that are definitely “in” (X)14 and a set of outcomes that are definitely out (Y). For a node
at depth d, X ∪ Y always constitutes the first d outcomes for some fixed order of the outcomes;
thus, a node has two children, one where the next outcome is added to X , and one where it is added
to Y . The expansion order is fixed at putting the node in X first, and then in Y . The heuristic value
(bound) of a node is given by v(X,Y), as described above.

We can now simply apply A*; this, however, quickly fills up the available memory, so we resort
to more space-efficient methods. We first present branch-and-bound depth-first search (expanding
every node that still has a chance of leading to a better solution than the best one so far, in depth-
first order) for our setting, and then IDA* (in which we maintain a target objective value, and do
not expand nodes that do not have a chance of reaching this value; if we fail to find a solution, we
decrease the target value and try again). (An overview of search methods such as these can be found
in Russell and Norvig [2003].)

14We emphasize that this does not mean that the outcome will definitely be used by the mechanism corresponding to
any descendant leaf node; rather, this outcome may be used by any descendant leaf node; and for any descendant leaf
node, in the mechanism associated with this node, any type must receive an outcome at least as good to it as this one.

150 CHAPTER 6. AUTOMATED MECHANISM DESIGN

In the following, v is the heuristic for the current node. d is the depth of the current node. ω
(a global variable) is the number of outcomes. CB (another global) is the outcome set correspond-
ing to the best mechanism found so far. L (another global) is the expected value of the objective
function for the best mechanism we have found so far. oi is outcome i. The other variables are as
described above.

BRANCH-AND-BOUND-DFS()
CB := NULL
L := −∞
SEARCH1({}, {}, 0, 1)
return CB

SEARCH1(X , Y , v, d)
if d = ω + 1
CB = X
L = v

else
if v(X ∪ {od}, Y) > L
SEARCH1(X ∪ {od}, Y , v(X ∪ {od}, Y), d+ 1)

if v(X,Y ∪ {od}) > L
SEARCH1(X , Y ∪ {od}, v(X,Y ∪ {od}), d+ 1)

6.7. AN ALGORITHM FOR SINGLE-AGENT SETTINGS 151

Our implementation of IDA* is similar, except we do not initialize L to−∞. Rather, we initial-
ize it to some high value, and decrease it every time we fail to find a solution—either to a fraction
of itself, or to the highest value that is still feasible (whichever is less). This also requires us to keep
track of the highest value still feasible (given by HF , another global variable), so that we have to
modify the search call slightly.

IDA*()
CB := NULL
L := initial-limit
while CB = NULL
HF := −∞
SEARCH2({}, {}, 0, 1)
L := min{HF, fraction·L}

return CB

SEARCH2(X , Y , v, d)
if d = ω + 1

CB = X

L = v

else
if v(X ∪ {od}, Y) > L

SEARCH2(X ∪ {od}, Y , v(X ∪ {od}, Y), d+ 1)
else if v(X ∪ {od}, Y) > HF

HF := v(X ∪ {od}, Y)

if v(X,Y ∪ {od}) > L

SEARCH2(X , Y ∪ {od}, v(X,Y ∪ {od}), d+ 1)
else if v(X,Y ∪ {od}) > HF

HF := v(X,Y ∪ {od})

Efficiently updating the heuristic

Rather than computing the heuristic anew each time, it can be computed much more quickly from
information used for computing the heuristic at the parent node. For instance, when adding an
outcome o to X , we will not have to change oX,Y (θ) unless u(θ, o) > u(θ, oX,Y (θ)). As another
example, when adding an outcome o to Y , we will not have to change oX,Y (θ) unless oX,Y (θ) = o.
In addition to this, maintaining appropriate data structures (such as a list of the outcomes sorted by
objective value for a given type) allows us to quickly find the new outcome when we do need to
make a change.

6.7.5 Individual rationality

We now show how to deal with an individual rationality constraint in this setting.

152 CHAPTER 6. AUTOMATED MECHANISM DESIGN

Theorem 45 oX is individually rational if and only if for every θ ∈ Θ, there is some o ∈ X such
that u(θ, o) ≥ 0.

Proof: If for some θ ∈ Θ, there is no o ∈ X such that u(θ, o) ≥ 0, oX cannot give the agent
nonnegative utility for type θ because oX uses only outcomes from X; so it is not individually
rational. On the other hand, if for every θ ∈ Θ, there is some o ∈ X such that u(θ, o) ≥ 0, then
oX will give the agent nonnegative utility for that type θ, because oX is constrained to choose an
outcome that maximizes u(θ, ·) among outcomes from X , and at least one of the outcomes in X
gives nonnegative utility. So it is individually rational.

It follows that when we have an individual rationality constraint, in our search procedures, we
do not need to expand nodes where for some type θ, there are no outcomes left in O − Y that give
the agent a nonnegative utility for θ.

6.7.6 Experimental results

In this subsection, we compare the performances of branch-and-bound DFS and IDA* over our
search space with the performance of the mixed integer programming approach described earlier
(using CPLEX 8.0), on random instances drawn from three different distributions. In each case, we
investigate both scalability in the number of types and in the number of outcomes.

6.7. AN ALGORITHM FOR SINGLE-AGENT SETTINGS 153

Uniform distribution, no IR

For this distribution, each value u(θ, o) and each value g(θ, o) is independently and uniformly drawn
from [0, 100]. No IR constraint applies (all utilities are nonnegative).

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

10 20 30 40 50 60 70 80 90

lo
g(

tim
e

in
 s

ec
on

ds
)

types

branch and bound
IDA*

CPLEX 8.0

Figure 6.1: Performance vs. types for the uniform, no IR case with 20 outcomes.

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

10 15 20 25 30

lo
g(

tim
e

in
 s

ec
on

ds
)

outcomes

branch and bound
IDA*

CPLEX 8.0

Figure 6.2: Performance vs. outcomes for the uniform, no IR case with 30 types.

Both versions of our algorithm outperform CPLEX soundly; our approach is especially more scal-
able in the number of types.

154 CHAPTER 6. AUTOMATED MECHANISM DESIGN

Uniform distribution, with IR

Now, each value u(θ, o) and each value g(θ, o) is independently and uniformly drawn from [−50, 50].
We apply an IR constraint (the agent can never get negative utility).

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

10 20 30 40 50 60 70 80 90

lo
g(

tim
e

in
 s

ec
on

ds
)

types

branch and bound
IDA*

CPLEX 8.0

Figure 6.3: Performance vs. types for the uniform, with IR case with 20 outcomes.

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

10 15 20 25 30

lo
g(

tim
e

in
 s

ec
on

ds
)

outcomes

branch and bound
IDA*

CPLEX 8.0

Figure 6.4: Performance vs. outcomes for the uniform, with IR case with 30 types.

Both versions of our algorithm still solidly outperform CPLEX, but the gaps are a little tighter;
CPLEX manages to get a greater speedup factor out of the IR constraint.

6.7. AN ALGORITHM FOR SINGLE-AGENT SETTINGS 155

Bartering

The final distribution corresponds to the bartering problem described earlier. The designer and
the agent each have m/2 goods (for 2m outcomes—each good can end up with either agent); the
designer has a randomly drawn value (from [0, 10]) for each individual good (constituting g, which
does not depend on θ in this case), and the agent has a randomly drawn value (from [0, 10]) for each
individual good for each type (constituting u). The value of a bundle to an agent is the sum of the
values of the individual goods.15 If the total number of goods is odd, the agent gets one more good
than the designer.

-2

-1.5

-1

-0.5

0

0.5

10 15 20 25 30 35 40 45 50

lo
g(

tim
e

in
 s

ec
on

ds
)

types

branch and bound
IDA*

CPLEX 8.0

Figure 6.5: Performance vs. types for the bartering case with 32 outcomes.

-2.5

-2

-1.5

-1

-0.5

0

0.5

5 10 15 20 25 30 35

lo
g(

tim
e

in
 s

ec
on

ds
)

outcomes

branch and bound
IDA*

CPLEX 8.0

Figure 6.6: Performance vs. outcomes for the bartering case with 50 types.

The gaps here are much tighter, and it appears that CPLEX may in fact get the upper hand on even
larger instances. (Space limitations prevented us from taking the experiments further.) CPLEX
apparently makes very good use of the additional structure in this domain, whereas our algorithm

15There is nothing preventing our approach from having more complicated values over bundles; we simply felt it was
nice to present the simplest example.

156 CHAPTER 6. AUTOMATED MECHANISM DESIGN

is not geared towards exploiting this structure. Also, IDA* seems to outperform branch-and-bound
DFS now.

6.8 Structured outcomes and preferences

So far, we have only studied a flat representation of automated mechanism design problem instances,
e.g. we assumed that all possible outcomes were explicitly listed in the input. However, in expres-
sive preference aggregation, the outcome space is often too large to enumerate all the outcomes.
Nevertheless, in such settings, the outcomes and the agents’ preferences over them usually have
some structure that allows the problem to still be concisely represented. In this section, we study
one particular type of such structure: the agents may have to simultaneously decide on multiple,
otherwise unrelated issues. In this case, the outcome space can be represented as the cross product
of the outcome spaces for the individual issues. The next definition makes this precise.

Definition 30 O = O1 × O2 × . . . × Or is a valid decomposition of O (where r is the number of
issues) if the following two conditions hold:

• For each agent i, for each 1 ≤ k ≤ r there exists a function uki : Θi × Ok → R such that
ui(θi, (o

1, . . . , or)) =
∑

1≤k≤r
uki (θi, o

k);

• For each 1 ≤ k ≤ r there exists a function gk : Θ1 × . . . × Θn × Ok → R such that
g(θ1, . . . , θn, (o

1, . . . , or)) =
∑

1≤k≤r
gk(θ1, . . . , θn, o

k).

We observe that when g is a social welfare function, the first condition implies the second, because
if the first condition holds, g(θ1, . . . , θn, (o1, . . . , or)) =

∑

1≤i≤n
ui(θi, (o

1, . . . , or)) =

∑

1≤i≤n

∑

1≤k≤r
uki (θi, o

k) =
∑

1≤k≤r

∑

1≤i≤n
uki (θi, o

k), so that we can define gk(θ1, . . . , θn, ok) =
∑

1≤i≤n
uki (θi, o

k).

We call automated mechanism design with a valid decomposition multi-issue automated mecha-
nism design. It may seem that we can solve a multi-issue AMD instance simply by solving the
AMD problem for each individual issue separately. However, doing so will in general not give the
optimal mechanism. The reason is that in general, the designer may use one issue to tailor the in-
centives to get better results on another issue. For example, in an auction setting, one could think
of the allocation as one issue, and the payments as another issue. Even when the designer is only
concerned with bringing about the optimal allocation, the payments are still a useful instrument to
give the bidders an incentive to bid truthfully. (We caution the reader that apart from this minor
deviation, we do not consider the payments to be part of the outcome space O here.) As another
example, we saw in Chapter 5 that using a single mechanism to decide on the donations to multiple
charities can be more efficient than using a separate mechanism for each charity (Proposition 8).
The hardness results later in this section will also imply that solving the AMD problem separately
for each issue does not give the optimal solution. (The multi-issue AMD problem is NP-complete

6.8. STRUCTURED OUTCOMES AND PREFERENCES 157

even in settings where the corresponding single-issue AMD problem is in P, so if the approach of
solving the problem separately for each issue were optimal, we would have shown that P=NP.)

6.8.1 Example: Multi-item auctions

Consider auctioning a set of distinguishable items. If each of the m items can be allocated to
any of n agents (or to no agent at all), the outcome space O has size (n + 1)m (one for each
possible allocation). If, for every bidder, the bidder’s valuation for any bundle of items is the
sum of the bidder’s valuations of the individual items in the bundle, then we can decompose the
outcome space as O = O1 ×O2 × . . .×Om, where Ok = {0, 1, 2, . . . , n} is the set of all possible
allocations for item k (0 indicating it goes to no agent). Agent i’s utility function can be written as
ui((o

1, o2, . . . , om)) =
∑

k∈{1,...,m} u
k
i (o

k) where uki is given by uki (i) = vi(k) and uki (j) = 0 for
j 6= i, where vi(k) is agent i’s valuation for item k.

Two extensions of this that also allow for decomposable outcome spaces are the following:

• An agent, if it does not receive an item, still cares which agent (if any) receives that item—that
is, there are externalities (as discussed in Chapter 2, Section 2.4). Here we no longer always
have uki (j) = 0 for j 6= i. For example, John may prefer it if the museum wins the painting
rather than a private collector, because in the former case he can still see the painting.

• Some items exhibit substitutability or complementarity (so an agent’s valuation for a bundle
is not the sum of its valuations of the individual items in the bundle), but the items can be par-
titioned into subsets so that there are no substitution or complementarity effects across subsets
in the partition. In this case, we can still decompose the outcome space over these subsets.
For example, a plane trip, a hotel stay, a cell phone and a pager are all for sale. The plane trip
and the hotel stay are each worthless without the other: they are perfect complements. The
cell phone and the pager each reduce the value of having the other: they are (partial) substi-
tutes. But the value of the plane trip or the hotel stay has nothing to do with whether one also
gets the cell phone or the pager. Thus, we decompose the outcome space into two issues, one
indicating the winners of the plane trip and hotel stay, and one indicating the winners of the
cell phone and the pager.

In each of these settings, the approach of this section can be used directly to maximize any
objective that the designer has. (This requires that the vaulations lie in a finite interval and are
discretized.)

6.8.2 Complexity

In this subsection we show that for the multi-issue representation, the three most important variants
of the problem of designing a deterministic mechanism are NP-complete. Of course, the hard-
ness results from Section 6.3 already imply this, because flatly represented problem instances are
a special case of the multi-issue representation. However, it turns out that under the multi-issue
representation, hardness occurs even in much more restricted settings (with small type spaces and a
small outcome space for each issue).

158 CHAPTER 6. AUTOMATED MECHANISM DESIGN

Theorem 46 The AMD problem for designing deterministic mechanisms without payments is NP-
complete under the multi-issue representation, even when the objective is social welfare, there is
only a single type-reporting agent (in addition to an agent that does not report a type), the prob-
ability distribution over Θ is uniform, there are only two possible types, and |Oi| = 2 for all i.
(Membership in NP is guaranteed only if the number of agents is constant.)

Proof: The problem is in NP because we can nondeterministically generate the full outcome se-
lection function o (as long as the number of agents is constant, because otherwise there are expo-
nentially many type vectors). To show NP-hardness, we reduce an arbitrary KNAPSACK instance
(given by a set of pairs {(cj , vj)}j∈{1,...,m}, a cost limit C, and a value goal V) to the following
single-agent deterministic multi-issue AMD instance, where payments are not allowed and the ob-
jective is social welfare. Let the number of issues be r = m+1. For every j ∈ {1, . . . ,m+1}, we
have Oj = {t, f}. The agent’s type set, over which there is a uniform distribution, is Θ = {θ1, θ2},
and the agent’s utility function u =

∑

k∈{1,...,r} u
k is given by:

• For all k ∈ {1, . . . ,m}, uk(θ1, t) = AB where A = 2
∑

j∈{1,...,m}
cj and B = 2

∑

j∈{1,...,m}
vj ;

and uk(θ1, f) = 0.

• um+1(θ1, t) = um+1(θ1, f) = 0.

• For all k ∈ {1, . . . ,m}, uk(θ2, t) = ck, and uk(θ2, f) = 0.

• um+1(θ2, t) = C, and um+1(θ2, f) = 0.

The part of the social welfare that does not correspond to any agent in the game is given by u0 =
∑

k∈{1,...,r}
uk0 where

• For all k ∈ {1, . . . ,m}, uk0(t) = 0, and uk(f) = vkA.

• um+10 (t) = um+10 (f) = 0.

The goal social welfare is given by G = A(mB+V)
2 . We show the two instances are equivalent. First

suppose there is a solution to the KNAPSACK instance, that is, a subset S of {1, . . . ,m} such that
∑

j∈S
cj ≤ C and

∑

j∈S
vj ≥ V . Then consider the following mechanism:

• For all k ∈ {1, . . . ,m}, ok(θ1) = t.

• For k ∈ {1, . . . ,m}, ok(θ2) = f if k ∈ S, ok(θ2) = t otherwise.

• om+1(θ1) = f , and om+1(θ2) = t.

First we show there is no incentive for the agent to misreport. If the agent has type θ1, then it
is getting the best possible outcome for each issue by reporting truthfully, so there is certainly
no incentive to misreport. If the agent has type θ2, reporting truthfully gives it a utility of C +

∑

j∈{1,...,m},/∈S
cj , whereas reporting θ1 instead gives it a utility of

∑

j∈{1,...,m}
cj ; so the marginal utility

6.8. STRUCTURED OUTCOMES AND PREFERENCES 159

of misreporting is −C +
∑

j∈S
cj ≤ −C + C = 0. Hence there is no incentive to misreport. Now

we show that the goal social welfare is reached. If the agent has type θ1, the social welfare will be
mAB. If it has type θ2, it will be

∑

j∈S
vjA +

∑

j∈{1,...,m},/∈S
cj + C ≥

∑

j∈S
vjA ≥ V A. Hence the

expected social welfare is at least mAB+V A
2 = G. So there is a solution to the AMD instance. Now

suppose there is a solution to the AMD instance. If it were the case that, for some j ∈ {1, . . . ,m},
oj(θ1) = f , then the maximum social welfare that could possibly be obtained (even if we did not

worry about misreporting) would be (m−1)AB+vjA
2 +

∑

j∈{1,...,m}

vjA+C

2 =
(m−1)AB+AB

2
+vjA+C

2 <
mAB+V A

2 = G. Thus, for all j ∈ {1, . . . ,m}, ok(θ1) = t. Now, let S = {j ∈ {1, . . . ,m} :
oj(θ2) = f}. Then, if the agent has type θ2 and reports truthfully, it will get utility at most C +

∑

j∈{1,...,m},/∈S
cj , as opposed to the at least

∑

j∈{1,...,m}
cj that it could get for this type by reporting θ1

instead. Because there is no incentive to misreport in the mechanism, it follows that
∑

j∈S
cj ≤ C.

Also, the total social welfare obtained by the mechanism is at most
mAB+

∑

j∈S
vjA+

∑

j∈{1,...,m},/∈S

cj+C

2 .
Because

∑

j∈{1,...,m},/∈S
cj+C < A, and all the other terms in the numerator are some integer timesA,

it follows that this fraction is greater than or equal to the goal mAB+V A
2 (where the numerator is also

an integer times A) if and only if
∑

j∈S
vj ≥ V —and this must be the case because by assumption,

the mechanism is a solution to the AMD instance. It follows that S is a solution to the KNAPSACK
instance.

Theorem 47 The AMD problem for designing deterministic mechanisms with payments is NP-
complete under the multi-issue representation, even when the objective does not depend on the
payments made, there is only a single type-reporting agent, the probability distribution over Θ is
uniform, there are only two possible types, and |Oi| = 2 for all i. (Membership in NP is guaranteed
only if the number of agents is constant.)

Proof: It is easy to see that the problem is in NP. (We can nondeterministically generate the outcome
function as before, after which setting the payments is a linear programming problem and can hence
be done in polynomial time—presuming, again, that the number of agents is constant.) To show NP-
hardness, we reduce an arbitrary KNAPSACK instance (given by a set of pairs {(cj , vj)}j∈{1,...,m},
a cost limit C, and a value goal V) to the following single-agent deterministic multi-issue AMD
instance, where payments are allowed. Let the number of issues be r = m + 1. For every
j ∈ {1, . . . ,m + 1}, we have Oj = {t, f}. The agent’s type set, over which there is a uniform
distribution, is Θ = {θ1, θ2}, and the agent’s utility function u =

∑

k∈{1,...,r} u
k is given by:

• For all k ∈ {1, . . . ,m}, uk(θ1, t) = ck, and uk(θ1, f) = 0.

• um+1(θ1, t) = C, and um+1(θ1, f) = 0.

• For all k ∈ {1, . . . ,m}, uk(θ2, t) = 0, uk(θ2, f) = ck.

160 CHAPTER 6. AUTOMATED MECHANISM DESIGN

• um+1(θ2, t) = 0, and um+1(θ2, f) = C.

The objective function g =
∑

k∈{1,...,r}
gk is given by

• For all k ∈ {1, . . . ,m}, gk(θ1, t) = 0, and gk(θ1, f) = A where A = 2
∑

j∈{1,...,m}
vj .

• For all k ∈ {1, . . . ,m}, gk(θ2, t) = vk, gk(θ2, f) = 0.

• gm+1(θ1, t) = gm+1(θ1, f) = gm+1(θ2, t) = gm+1(θ2, f) = 0.

The goal for the objective function is given by G = mA+V
2 . We show the two instances are equiv-

alent. We first observe a useful fact about the utility function: when there are no payments, for
any outcome function, the incentive for the agent to misreport when it has type θ1 is the same as
the incentive for the agent to misreport when it has type θ2. That is, for any outcome function o,
u(θ1, o(θ2)) − u(θ1, o(θ1)) = u(θ2, o(θ1)) − u(θ2, o(θ2)). To see why, first consider that if we
(say) set ok(θ1) = ok(θ2) = f everywhere, obviously this is true. Then, whenever, for some k,
we ”flip” ok(θ1) to t, the second term (including the minus sign) on the left hand side decreases by
the same amount as the first term on the right hand side. Similarly, whenever we ”flip” ok(θ2) to
t, the first term on the left hand side increases by the same amount as the second term (including
the minus sign) on the right hand side. A corollary of this observation is that for this example,
payments cannot help us make the mechanism truthful. For, if without payments, the mechanism
would not be truthful, the agent would have an incentive to lie for both types (without payments).
Then, if the agent needs to pay more for reporting one type than for the other, the agent will still
have an (even bigger) incentive to lie for at least that type. Thus, we may as well assume payments
are not possible. Now, suppose there is a solution to the KNAPSACK instance, that is, a subset S
of {1, . . . ,m} such that

∑

j∈S
cj ≤ C and

∑

j∈S
vj ≥ V . Then consider the following mechanism:

• For all k ∈ {1, . . . ,m}, ok(θ1) = f .

• For k ∈ {1, . . . ,m}, ok(θ2) = t if k ∈ S, ok(θ2) = f otherwise.

• om+1(θ1) = t, and om+1(θ2) = f .

(The payment function is 0 everywhere.) First we show there is no incentive for the agent to misre-
port. Because we observed that the incentive to misreport is the same for both types, we only need
to show this for one type. We will show it when the agent’s true type is θ1. In this case, reporting
truthfully gives utility C, and reporting θ2 gives utility

∑

j∈S
cj ≤ C. Hence there is no incentive to

misreport. Now we show that the goal value of the objective is reached. If the agent has type θ1,
the value of the objective function will be mA. If it has type θ2, it will be

∑

j∈S
vj ≥ V . Hence the

expected value of the objective function is at least mA+V
2 = G. So there is a solution to the AMD

instance. Finally, suppose there is a solution to the AMD instance. As a reminder, payments cannot
help us, so we may assume they are always 0. If it were the case that, for some j ∈ {1, . . . ,m},
ok(θ1) = t, then the maximum social welfare that could possibly be obtained (even if we did not

6.8. STRUCTURED OUTCOMES AND PREFERENCES 161

worry about misreporting) would be
(m−1)A+ ∑

j∈{1,...,m}

vj

2 < mA
2 < G. Thus, for all j ∈ {1, . . . ,m},

ok(θ1) = f . Now, let S = {j ∈ {1, . . . ,m} : oj(θ2) = t}. The incentive for the agent to misreport
when it has type θ1 is then at least−C+

∑

j∈{1,...,m}
cj , which should be less than or equal to 0, so that

∑

j∈{1,...,m}
cj ≤ C. Additionally, the expected value of the objective function is

mA+
∑

j∈S
vj

2 , which

should be at least G = mA+V
2 . It follows that

∑

j∈S
vj ≥ V . Thus S is a solution to the KNAPSACK

instance.

Theorem 48 The AMD problem for designing deterministic mechanisms is NP-complete under the
multi-issue representation, even when the objective is to maximize total payments made (under an
IR constraint), there is only a single type-reporting agent, the probability distribution over Θ is
uniform, there are only two possible types, and |Oi| = 2 for all i. (Membership in NP is guaranteed
only if the number of agents is constant.)

Proof: It is easy to see that the problem is in NP. (We can nondeterministically guess an outcome
function, after which setting the payments is a linear programming problem and can hence be done
in polynomial time.) To show NP-hardness, we reduce an arbitrary KNAPSACK instance (given by
a set of pairs {(cj , vj)}j∈{1,...,m+1}, a cost limitC, and a value goal V) to the following single-agent
deterministic multi-issue AMD instance, where we seek to maximize the expected payments from
the agent. Let the number of issues be r = m+1. For every j ∈ {1, . . . ,m}, we have Oj = {t, f}.
The agent’s type set, over which there is a uniform distribution, is Θ = {θ1, θ2}, and the agent’s
utility function u =

∑

k∈{1,...,r} u
k is given by:

• For all k ∈ {1, . . . ,m}, uk(θ1, t) = ckA where A = 4
∑

j∈{1,...,m}
vj ; and uk(θ1, f) = 0.

• um+1(θ1, t) = 0, and um+1(θ1, f) = −CA.

• For all k ∈ {1, . . . ,m}, uk(θ2, t) = vk, and uk(θ2, f) = 0.

• um+1(θ2, t) = 0, and um+1(θ2, f) = 0.

The goal expected revenue is given by G = AB+V
2 , where B =

∑

j∈{1,...,m}
cj . We show the two

instances are equivalent. First suppose there is a solution to the KNAPSACK instance, that is,
a subset S of {1, . . . ,m} such that

∑

j∈S
cj ≤ C and

∑

j∈S
vj ≥ V . Then consider the following

mechanism. Let the outcome function be

• For all k ∈ {1, . . . ,m}, ok(θ1) = t.

• For k ∈ {1, . . . ,m}, ok(θ2) = t if k ∈ S, ok(θ2) = f otherwise.

• om+1(θ1) = t, om+1(θ2) = f .

162 CHAPTER 6. AUTOMATED MECHANISM DESIGN

Let the payment function be π(θ1) = AB, π(θ2) =
∑

j∈S
vj . First, to see that the IR constraint is

satisfied, observe that for each type, the mechanism extracts exactly the agent’s utility obtained from
the outcome function. Second, we show there is no incentive for the agent to misreport. If the agent
has type θ1, reporting θ2 instead gives a utility (including payments) of−CA+

∑

j∈S
cjA−

∑

j∈S
vj ≤

−CA + CA −
∑

j∈S
vj < 0, which is what the agent would have got for reporting truthfully. If

the agent has type θ2, reporting θ1 instead gives a utility (including payments) of A
4 − AB < 0,

which is what the agent would have got for reporting truthfully. Hence there is no incentive to

misreport. Third, the goal expected payment is reached because
AB+

∑

j∈S
vj

2 ≥ AB+V
2 = G. So

there is a solution to the AMD instance. Now suppose there is a solution to the AMD instance. The
maximum utility that the agent can get from the outcome function if it has type θ2 is A

4 , and by the IR
constraint this is the maximum payment we may extract from the agent when the reported type is θ2.
Because the goal is greater than AB

2 , it follows that the payment the mechanism should extract from
the agent when the reported type is θ1 is at least AB − A

4 . Because the maximum utility the agent
can derive from the outcome function in this case is AB, it follows that the agent’s utility (including
payments) for type θ1 can be at most A

4 . Now consider the set S = {j ∈ {1, . . . ,m} : oj(θ2) = t}.
Then, if the agent falsely reports type θ2 when the true type is θ1, the utility of doing so (including
payments) is at least

∑

j∈S
cjA − CA − A

4 . This is to be at most the agent’s utility for reporting

truthfully in this case, which is at most A
4 . It follows that

∑

j∈S
cjA − CA − A

4 ≤
A
4 , which is

equivalent to
∑

j∈S
cj ≤ C + 1

2 . Because the cj and C are integers, this implies
∑

j∈S
cj ≤ C. Finally,

because we need to extract at least a payment of V from the agent when type θ2 is reported, but
the utility that the agent gets from the outcome function in this case is at most

∑

j∈S
vj and we can

extract at most this by the IR constraint, it follows that
∑

j∈S
vj ≥ V . Thus, S is a solution to the

KNAPSACK instance.

The NP-hardness of automatically designing optimal deterministic mechanisms under the multi-
issue representation was already implied by similar results for the unstructured (single-issue) repre-
sentation. However, the fact that (unlike under the unstructured representation) NP-hardness occurs
even with very small type sets is perhaps discouraging. On the other hand, one can be positive about
the fact that the problem remains in NP (if the number of agents is constant), even though the rep-
resentation is exponentially more concise. In the next subsection, we show that pseudopolynomial-
time algorithms do exist for this problem (given a constant number of types). More significantly,
in the subsection after that, we show that optimal randomized mechanisms can still be designed in
polynomial time even under the multi-issue representation. Hence, it seems that this representation
is especially useful when we allow for randomized mechanisms.

6.8. STRUCTURED OUTCOMES AND PREFERENCES 163

6.8.3 A pseudopolynomial-time algorithm for a single agent

In this subsection we develop a pseudopolynomial-time algorithm that shows that the first two
multi-issue AMD problems discussed in the previous subsection are only weakly NP-complete.
(A problem is only weakly NP-complete if it is NP-complete, but there exists an algorithm that
would run in polynomial time if the numbers in the instance were given in unary, rather than
binary—a pseudopolynomial-time algorithm.) This algorithm only works when there is only one
type-reporting agent. While this is still a significant problem because of the conflict of interest be-
tween the designer and the agent, it is an interesting open problem to see if the algorithm can be
generalized to settings with multiple agents.

Theorem 49 If there is only a single agent, the number of types is a constant, and the objective
does not depend on payments made, then the optimal deterministic mechanism can be found in
pseudopolynomial time under the multi-issue representation using dynamic programming, both with
and without payments, both for ex post and ex interim IR, and both for implementation in dominant
strategies and for implementation in Bayes-Nash equilibrium.

Proof: The dynamic program adds in the issues one at a time. For each k ∈ {0, 1, . . . , r}, it builds
a matrix which concerns a reduced version of the problem instance where only the first k issues
are included. Let r(θi, θj) = u(θi, o(θj)) − u(θi, o(θi)), that is, the regret that the agent has for
reporting its true type θi rather than submitting the false report θj . (These regrets may be negative.)
Any outcome function mapping the reported types to outcomes defines a vector of |Θ|(|Θ|−1) such
regrets, one for each pair (θi, θj). Then, our matrix for the first k issues contains, for each possible
regret vector v, a number indicating the highest expected value of the objective function that can
be obtained with an outcome function over the first k issues whose regret vector is dominated by
v. (One vector is said to be dominated by another if all entries of the former are less than or
equal to the corresponding ones of the latter.) This entry is denoted M k[v]. We observe that if v1
dominates v2, then Mk[v1] ≥ Mk[v2]. If the absolute value of the regret between any two types is
bounded by R, it suffices to consider (2R+ 1)|Θ|(|Θ|−1) regret vectors (each entry taking on values
in {−R,−R + 1, . . . , 0, . . . , R − 1, R}). The matrix for k = 0 (i.e., when no issues have yet been
added) is 0 everywhere. We then successively build up the next matrix as follows. When we add
in issue k, there are |Ok||Θ| possibilities for setting the outcome function ok from types to elements
of Ok. Denoting a possible setting of ok by a vector w = (ok(θ1), ok(θ2), . . . , ok(θ|Θ|)), letting
gk(w) =

∑

θ∈Θ
gk(θ, ok(θ)) be the total value gained in the objective function as a result of this vector,

and letting r(w) = (uk(θi, ok(θj))−uk(θi, ok(θi)){θi 6=θj} be the regret vector over this issue alone,
we have the following recursive identity for k > 0: M k[v] = maxw{g

k(w) +Mk−1[v − r(w)]}.
It is possible that, when we use this identity to fill in the matrices, the identity refers to an entry
”outside” the previous matrix, that is, one of the entries of v − r(w) has absolute value greater than
R. If this occurs, one of the following two cases applies:

• One of the entries is greater than R. This means that the regret allowed for one of the pairs
(θi, θj) is greater than the maximum it could be. We may reduce the value of this entry to R,
without causing a reduction in the highest value of the objective function that can be obtained.

164 CHAPTER 6. AUTOMATED MECHANISM DESIGN

• One of the entries is smaller than −R. This means that the regret allowed for one of the
pairs (θi, θj) is smaller than the minimum it could be. Hence, it is impossible to construct an
outcome function that satisfies this, and hence we simply say M k−1[v − r(w)] = −∞.

Once we have constructed M r, we can use this matrix to solve any of our deterministic auto-
mated mechanism design problems. If payments are not allowed, we simply look at the entry
M r[(0, 0, . . . , 0)], because this is the highest possible expected value of the objective function that
we can obtain without the agent having positive regret anywhere. If payments are allowed, then
we look at all the entries M r[v] where the regret vector v is such that we can set the payments so
as to make every regret disappear—that is, where we can set πθ such that for any θi, θj , we have
r(θi, θj) + π(θj)− π(θi) ≤ 0. (This is a simple linear program and can hence be solved in polyno-
mial time.) Of all these entries, we choose the one with the highest value of the objective function.
If we want to know not only the highest possible expected value of the objective function, but also
a mechanism that achieves it, we need to store at each step not only the highest possible expected
value for each matrix entry, but also a partial outcome function that achieves it.

6.8.4 A polynomial-time algorithm for randomized mechanisms

When we allow randomization in the mechanism, it turns out that an optimal mechanism can be
designed in time that is polynomial in the length of the concise representation, as in the case of
flatly represented instances (Section 6.4).

Theorem 50 With a constant number of agents, the optimal randomized mechanism can be found
in polynomial time under the multi-issue representation using linear programming, both with and
without payments, both for ex post and ex interim IR, and both for implementation in dominant
strategies and for implementation in Bayes-Nash equilibrium.

Proof: We cannot simply use the linear program from Section 6.4, because it would have an ex-
ponential number of variables under the multi-issue representation. However, we can reduce the
number of variables to a polynomial number. To this end, we observe:

• For all i, E(ui|(θ̂1, . . . , θ̂n), θi) =
∑

(o1,...,or)∈O
P ((o1, . . . , or)|(θ̂1, . . . , θ̂n))

∑

1≤k≤r
uki (θi, o

k)

=
∑

1≤k≤r

∑

(o1,...,or)∈O
P ((o1, . . . , or)|(θ̂1, . . . , θ̂n))u

k
i (θi, o

k) =

∑

1≤k≤r

∑

ok∗∈Ok

uki (θi, o
k
∗)

∑

(o1,...,or):ok=ok∗

P ((o1, . . . , or)|(θ̂1, . . . , θ̂n)) =

∑

1≤k≤r

∑

ok∗∈Ok

P (ok = ok∗|(θ̂1, . . . , θ̂n))u
k
i (θi, o

k
∗).

• Similarly, E(g|(θ̂1, . . . , θ̂n)) =
∑

1≤k≤r

∑

ok∗∈Ok

P (ok = ok∗|(θ̂1, . . . , θ̂n))g
k((θ̂1, . . . , θ̂n), o

k
∗).

It follows that for the purposes at hand, we care only about the quantitiesP (ok = ok∗|(θ̂1, . . . , θ̂n)),
rather than about the entire distribution. There are precisely

∑

1≤k≤r
|Ok|

∏

1≤i≤n
|Θi| such probabili-

ties, which is a polynomial number when the number of agents, n, is a constant. Additionally, only

6.9. SUMMARY 165

n
∏

1≤i≤n
|Θi| variables are needed to represent the payments made by the agents in each case (or

none if payments are not possible).
The linear program, which contains constraints for the IC notion and IR notion in question,

and attempts to optimize some linear function of the expected value of the objective function and
payments made, is now straightforward to construct. Because linear programs can be solved in
polynomial time, and the number of variables and equations in our program is polynomial for any
constant number of agents, the problem is in P.

6.9 Summary

In this chapter, we introduced automated mechanism design, which consists of solving for the opti-
mal mechanism for the instance at hand using constrained optimization techniques. We showed that
automatically designing optimal deterministic mechanisms is NP-hard in most cases, but design-
ing the optimal randomized mechanism can be done in polynomial time using linear programming.
Moreover, by requiring the probability variables in these linear programs to take on integer vari-
ables, we obtain a mixed integer programming approach for designing optimal deterministic mech-
anisms. We showed some initial applications, including divorce settlement, optimally auctioning
one or more items, and deciding on whether to build public goods. We presented scalability results
for the mixed integer/linear programming approaches; we also gave a special-purpose algorithm
for a special case that outperforms the mixed integer programming approach. Finally, we studied a
representation for instances of the automated mechanism design problem that is concise when there
are multiple unrelated issues, and studied how this changes the complexity of the problem.

In the next few chapters, we will take a break from automated mechanism design and instead
focus on the effects of agents’ computational limitations on their behavior in (manually designed)
mechanisms. We will return to the topic of designing mechanisms automatically in Chapter 10,
where we automatically design mechanisms for agents with computational limitations.

166 CHAPTER 6. AUTOMATED MECHANISM DESIGN

