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1 Introduction

Combinatorial auctions allow bidders to express complex valuations on bundles of

items, and have been proposed in settings as diverse as the allocation of floor space

in a new condominium building to individual units (Wired 2000) and the allocation

of take-off and landing slots at airports (Smith, Forward). Many applications are

described in Part V of this book.

The promise of combinatorial auctions (CAs) is that they can allow bidders

to better express their private information about preferences for different outcomes

and thus enhance competition and market efficiency. Much effort has been spent on

developing algorithms for the hard problem of winner determination once bids have

been received (Sandholm, Chapter 14). Yet, preference elicitation has emerged as

perhaps the key bottleneck in the real-world deployment of combinatorial auctions.

Advanced clearing algorithms are worthless if one cannot simplify the bidding

problem facing bidders.

Preference elicitation is a problem both because of the communication cost of

sending bids to the auction and also because of the cost on bidders to determine

their valuations for different bundles. The problem of communication complexity

can be addressed through the design of careful bidding languages, that provide

expressive but concise bids (Nisan Chapter 9). Non-computational approaches can

also be useful, such as defining the good and bundle space in the right way in the

first place (Pekeč and Rothkopf Chapter 16).

However, even well-designed sealed-bid auctions cannot address the problem

of hard valuation problems because they preclude the use of feedback and price

discovery to focus bidder attention. There are an exponential number of bundles to

value in CAs. Moreover, the problem of valuing even a single bundle can be diffi-

cult in many applications of CA technology. For instance, in the airport landing slot

scenario (see Ball, Donohue and Hoffman Chapter 20) we should imagine that air-

lines are solving local scheduling, marketing, and revenue-management problems

to determine their values for different combinations of slots.

1



Iterative combinatorial auctions are designed to address the problem of costly

preference elicitation that arises due to hard valuation problems. An iterative CA

allows bidders to submit multiple bids during an auction and provides information

feedback to support adaptive and focused elicitation. For example, an ascending

price auction maintains ask prices and allows bidders to revise bids as prices are

discovered. Significantly, it is often possible to determine an efficient allocation

without bidders reporting, or even determining, exact values for all bundles. In

contrast, any efficient sealed-bid auction requires bidders to report and determine

their value for all feasible bundles of goods.

This ability to mitigate the preference elicitation problem is a central concern in

iterative CA design. But there are also a number of less tangible yet still important

benefits:

� Iterative CAs can help to distribute the computation in an auction across

bidders through the interactive involvement of bidders in guiding the dy-

namics of the auction. Some formal models show the equivalence between

iterative CAs and decentralized optimization algorithms (Parkes and Ungar

2000a, de Vries, Schummer, and Vohra 2003). Iterative CAs can address

concerns about privacy because bidders only need to reveal partial and indi-

rect information about their valuations.
�

� Transparency is another practical concern in CAs. In the high-stakes world

of wireless spectrum auctions, the Federal Communications Commission

(FCC) has been especially keen to ensure that bidders can verify and val-

idate the outcome of an auction. Although mathematically elegant, the VCG

outcome can be difficult to explain to bidders, and validation requires the

disclosure and verification of many bids, both losing and winning. Thus,

even as readily describable implementations of sealed-bid auctions, iterative

CAs can offer some appeal (Ausubel and Milgrom 2002).

� The dynamic exchange of value information between bidders, that is en-
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abled within iterative CAs, is known to enhance revenue and efficiency in

single item auctions with correlated values (Milgrom and Weber 1982). Al-

though little is known about the design of iterative CAs for correlated value

problems, one should expect iterative CAs to retain this benefit over their

sealed-bid counterparts. Certainly, correlated value settings exist: consider

the wireless spectrum auctions in which valuations are in part driven by un-

derlying population demographics and shared technological realities.

Yet, even with all these potential advantages iterative CAs offer new opportu-

nities to bidders for manipulation. The biggest challenge in iterative CA design

is to support incremental and focused bidding without allowing new strategic be-

havior to compromise the economic goals of efficiency or optimality. For instance,

one useful design paradigm seeks to implement auctions in which straightforward

bidding (truthful demand revelation in response to prices) is an ex post equilib-

rium. This equilibrium is invariant to the private information of bidders, so that

straightforward bidding is a best response whatever the valuations of other bidders.

Steps can also be taken to minimize opportunities for signaling through careful

control of the information that can be shared between bidders during an auction.

Finally, the benefits of iterative auctions disappear when bidders choose to strate-

gically delay bidding activity until the last rounds of an auction. Activity rules

(Milgrom 2000) can be used to address this stalling and promote meaningful bid-

ding during the early rounds of an auction.

The existing literature on iterative CAs largely focuses on the design of efficient

auctions. Indeed, there are no known optimal (i.e. revenue-maximizing) general-

purpose CAs, iterative or otherwise. As such, the canonical VCG mechanism (see

Chapter 1) has guided the design of many iterative auctions.
�

We focus mainly on price-based approaches, in which the auctioneer pro-

vides ask prices to coordinate the bidding process. We also consider alternative

paradigms, including decentralized protocols, proxied auctions in which a bidding

agent elicits preference information and automatically bids using a predetermined

3



procedure, and direct-elicitation approaches.

In outline, Section 2 defines competitive equilibrium (CE) prices for CAs,

which may be non-linear and non-anonymous in general. Connections between

CE prices, the core of the coalitional game, and the VCG outcome are explained.

Section 3 describes the design space of iterative CAs. Section 4 discusses price-

based auctions, providing a survey of existing price-based CAs in the literature and

a detailed case study of an efficient ascending price auction. Section 5 considers

some alternatives to price-based design. Section 6 closes with a brief discussion of

some of the open problems in the design of iterative combinatorial auctions, and

draws some connections with the rest of this book.

2 Preliminaries

Let
���	��

�������������

denote the set of items, and assume a private values model

with �����������! to denote the value of bidder "$#&% �'��

����������()�
for bundle

�+* � . Note that set % does not include the seller. We assume free-disposal, with

� � �-,.�/�0� � ����� for all ,213� , and normalization, with � � �546� �  . Let 7 denote

the set of bidder valuations. Bidders are assumed to have quasi-linear utility (we

also use payoff interchangeably with utility), with utility 8 � ��� �:9 � � � � ���;�)< 9 for

bundle � at price
9 �= . This assumes the absence of any budget constraints.

Further assume that the seller has no intrinsic value for the items.

The efficient combinatorial allocation problem (CAP) solves:

>@?BAC�DFEGC�H�IKJKJKJ I CMLBN�O �QPSR �B�����T��� [CAP �U%V� ]
W �KX�� � �ZY �\[ � 4 � ] " �_^

Let �a` denote the efficient allocation. Also, we write CAP �U%cb."d� to denote the

combinatorial allocation problem without bidder " .
2.1 Competitive Equilibrium Prices

We can consider a hierarchical structure for ask prices in CAs:
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Linear. Prices
9 [ �& , for

^ # � , define additive prices on bundles, with
9 ����� �e [ P C 9 [ .

Non-linear. Prices,
9 �����f�g , for �+* � , allow

9 �����ih�j9 ��� � �lk 9 ��� � � , for some

� � � �Fm � � and � � Y � � � 4 .
Non-linear and Non-anonymous. Prices

9 � �����n�o , allow discriminatory pric-

ing, with
9 �������ph�c9 �rq ����� for bidder "sh� "_t , in addition to non-linear prices.

In the following definitions we adopt
9 ������� for notational convenience. We

intend to allow (but not require) with this notation non-linear and non-anonymous

prices. For instance, linear prices
9 [ can be considered to induce prices

9 � ����� �e [ P C 9 [ for bundle � and bidder " .
Competitive equilibrium prices extend the concept of Walrasian equilibrium

prices to a CA. Let uv����� �:9 � � �B�������S< 9 ������� denote bidder " ’s payoff from bundle �
at prices

9
and w.x���� �:9 � � e �QPSR 9 � ��� � � denote the seller’s revenue from allocation

� at prices
9

.

Definition 1 (Competitive Equilibrium). Prices,
9

, and allocation � ` � ��� `� �������y� � `z �
are in competitive equilibrium (CE) if:

u{����� `� �:9 � � >@?BAC}|{~�� �
�������a< 9 ������� �  B� ] " (1)

w x ��� ` �:9 � � >@?BAC PB� O �QP�R
9 �����T�_� (2)

where � denotes the set of all feasible allocations.

A competitive equilibrium � 9�� ��`y� is such that allocation ��` maximizes the

payoff of every bidder and the seller given prices. Allocation � ` is said to be

supported by prices
9

in CE.

Theorem 1. Allocation � ` is supported in competitive equilibrium if and only if

� ` is an efficient allocation.
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This welfare theorem follows from a simple linear-programming (LP) duality

argument for suitably extended LP formulations of the CAP (Bikhchandani and

Ostroy 2002, also Chapter 8). Moreover, CE prices always exist for the CAP.

For instance, prices
9 � � � � trivially satisfy the CE conditions. The main new

element in CAs is that these CE prices must sometimes be non-linear and non-

anonymous. Bikhchandani and Ostroy also show an equivalence between the core

of the coalitional game and the set of CE prices. All core outcomes can be priced,

and all CE prices correspond to core payoffs.

Many iterative CAs are designed to converge to CE prices, and as such it is

important to characterize classes of valuations for which linear, and non-linear but

anonymous, CE prices exist. We will also see that it is necessary that an efficient

CA must determine enough information about bidder valuations to define a set of

CE prices, and necessary that a Vickrey auction determines enough information to

define a set of universal CE prices.

For the existence of linear CE prices, it is sufficient (and almost necessary) �
that valuations satisfy a goods are substitutes property (Kelso and Crawford 1982,

Gul and Stacchetti 1999). This substitutes condition is defined indirectly, with

respect to a demand set:

� ��� 9 � ��� ���.uZ����� �:9 �V� >�?BA� |{~ u{���-, �:9 � � uZ����� �:9 �V�+ � �j* �;�6� (3)

which includes all bundles that maximize a bidder’s payoff at the prices.

Definition 2 (Goods are Substitutes). Valuation � � satisfies goods are substitutes

if for all linear prices
9��:9 t such that

9 t � 9 (component-wise), and all �j# � � � 9 � ,
there exists ,�# � � � 9 t � such that

��^ #$�=� 9 [ ��9 t[ � *�, .

The goods are substitutes (or simply substitutes) condition requires that a bid-

der will continue to demand items that do not change in price as the price on

other items increases. Substitutes valuations include unit-demand valuations with

� � ����� � >�?BA [ P C � � � [ � for all � and value � � [ on item
^

in isolation, but pre-
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clude the possibility of items with complementary values (Lehmann, Lehmann,

and Nisan 2001).

Conditions for the existence of non-linear but anonymous CE prices are less

well-understood, but sufficient conditions presented in Parkes (2001) (Theorem

4.7) include supermodular valuations, single-minded bidders that value a particular

bundle, and bidders with safe valuations such that each pair of bundles with positive

value to a bidder share at least one item. Consider, for example, a bidder in the FCC

spectrum auction that definitely needs lower Manhattan, along with as many of the

geographically neighboring licenses as possible.

2.2 Minimal Competitive Equilibrium Prices

In fact, many iterative CAs are designed to converge to minimal CE prices. This

can be useful for two reasons. First, minimal CE prices on bundles in the efficient

allocation correspond to VCG payments for a restricted class of valuations. In this

case, we say that the CE prices support the VCG payments. Termination with

CE prices that support VCG payments brings straightforward bidding into an ex

post equilibrium. Second, Ausubel and Milgrom (2000, also Chapter 3) show that

implementing minimal CE prices (corresponding to buyer-optimal core outcomes)

avoids the problems that can occur with the VCG auction when VCG payments are

not supported with minimal CE prices.

Definition 3 (Minimal CE Prices). Minimal CE prices minimize the seller’s total

revenue w.x���� ` �:9 � on the efficient allocation � ` across all CE prices.

A bidder’s payment in the VCG mechanism is always less than or equal to the

payment by that bidder at any CE price (Bikhchandani and Ostroy 2002). Thus,

minimal CE prices always provide an upper-bound on VCG payments. Moreover,

a bidder’s VCG payment is equal to the CE price on her efficient bundle in some

CE (Parkes and Ungar 2000b).

A characterization in terms of the coalitional value function explains when the

VCG can be supported simultaneously to all bidders in the minimal CE.
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Let �/�:�V� for ��*�% denote the coalitional value for a subset � of bidders,

equal to the value of the efficient allocation for CAP �:��� . The buyers are substitutes

(BAS) condition requires,

���U%V�)<��/�U%�b������ O�-P�� � �/�U%���<��/�U%�b�"d�_�
��] ����% (BAS)

Theorem 2. (Bikhchandani and Ostroy 2002) A buyers are substitutes (BAS) coali-

tional value function is necessary and sufficient to support the VCG payments in

competitive equilibrium.

In particular, the VCG payments are implemented in the minimal CE (or buyer-

optimal core) when BAS holds, and buyer-optimal core payoffs are unique exactly

when BAS holds.

A number of ascending price CAs can only terminate with minimal CE prices

given a slightly stronger condition, that of a buyer-submodular (BSM) coalitional

value function:

�/�:�V�)<��/�:��bV����� O�QP
� � ���:���a<��/�:��b�"d�_�
��] ����� �d] �+*�% (BSM)

Bikhchandani and Ostroy (Chapter 8) refer to BSM as buyers are strong sub-

stitutes. Clearly, a BSM coalitional value function also satisfies BAS. But there are

cases for which values satisfy BAS but not BSM (see Ausubel and Milgrom 2002,

Section 7, for example). Interestingly, substitutes valuations implies BSM and is al-

most necessary. Roughly, if at least one bidder does not satisfy substitutes then one

can construct substitutes valuations for other bidders such that the coalitional value

function fails BSM. See Ausubel and Milgrom (Chapter 1) for further discussion.

Thus, the same conditions for the existence of a linear price equilibrium are suf-

ficient and almost necessary for the existence of some price equilibrium (although

perhaps non-linear and non-anonymous) that supports the Vickrey outcome. �
2.3 Universal Competitive Equilibrium Prices

Experiments have suggested that BAS can often fail in realistic settings for CAs.  
In these cases the VCG payments are not supported in any price equilibrium. We
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can still design price-based CAs by characterizing a stronger condition on CE

prices that implies enough information to determine VCG payments from these

prices. For this, we restrict attention to the universal CE prices (Parkes and Ungar

2002, Mishra and Parkes 2004).

Definition 4 (Universal CE Prices). Prices
9

are universal Competitive Equilib-

rium (UCE) prices if:

a) Prices
9

are CE prices.

b) Prices
9�¡ � are CE prices for CAP �U%¢b}"d� , meaning they support some efficient

allocation in CAP �U%$b�"�� , for all bidders " .
where

9 ¡ � � � 9 � �������M�:9 � ¡ � �:9 �G£ � ���������:9 z � .
In words, prices are UCE when an efficient allocation for the restricted allo-

cation problem without bidder " is supported with prices
9 ¡ � , for each bidder "

removed in turn. Thus, UCE prices are CE prices in the main economy and in

every marginal economy. Note that UCE prices need not require that the same al-

location is supported in every marginal economy. The prices must support some

efficient allocation in each marginal economy. ¤
UCE prices always exist, for example

9 � � � � , for all bidders " , are UCE

prices. Moreover, a universal price equilibrium provides sufficient information

about bidder valuations to compute the VCG outcome.

Theorem 3. (Parkes and Ungar 2002) Given a UCE with prices
9l¥S¦�§

and an effi-

cient allocation �;` , the VCG payment to bidder " is computed as:

9Z¨�¦_© I � ��9{¥S¦�§ I � ��� `� �)< � w `R � 9{¥S¦�§ ��<�w `R}ªd� � 9{¥S¦�§ �_� (4)

where wi`« � 9 � � >@?BA C P�� � 9 � ��� � ��� for bidders �+*�% .

In the special case when prices are equal to valuations then this adjustment is

equivalent to the standard definition of VCG payments.
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2.4 Informational Requirements

Both CE and UCE prices have a central role in the preference elicitation problem.

First, any auction that implements an efficient allocation must determine a set of CE

prices. Second, any auction that implements the Vickrey outcome must determine

a set of UCE prices. Segal (Chapter 11) provides an extended discussion.

Since the VCG auction is basically unique amongst the class of efficient auc-

tions that take a zero payment from losing bidders (Ausubel and Milgrom, Chapter

1), these equivalences confirm the central role of prices in developing iterative CAs.

Theorem 4. (Parkes 2002, Nisan and Segal 2003) A combinatorial auction real-

izes the efficient allocation if and only if the auction also realizes a set of CE prices

and an allocation supported in the price equilibrium.

This result requires a technical condition of privacy-preservation, which pre-

cludes bidders from making their valuations contingent on the valuations of other

bidders (e.g. “my value for ¬ is at least bidder 2’s value for ¬ ”). ­
Theorem 5. (Parkes and Ungar 2002, Lahaie and Parkes 2004b) A combinatorial

auction realizes the VCG outcome if and only if the auction also realizes a set

of UCE prices and an allocation supported in the price equilibrium of the main

economy.

That UCE prices provide sufficient information was first proved in Parkes and

Ungar (2002). The necessary direction is due to Lahaie and Parkes (2004b). It is

important to realize that the CE and UCE prices referenced in these results may

only be realized implicitly and are not necessarily explicitly constructed in the

auctions.

Considering minimal CE prices in particular, Mishra and Parkes (2004) note

that minimal CE prices are universal iff BAS holds. In general, UCE prices are

greater than the minimal CE prices because they must consider competition in the

marginal economies in addition to the main economy.
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The informational equivalence between the efficient outcome and the problem

of discovering CE prices leads to a (largely negative) characterization of the worst-

case communication complexity and preference-elicitation requirements of any ef-

ficient CA, iterative or otherwise (Segal, Chapter 11). On the other hand, iterative

CAs are designed to have good elicitation properties on typical instances, while

sealed-bid auctions must suffer the worst case every time. Moreover, this price

equivalence suggests the central role of prices in the design of iterative CAs. Any

protocol to determine the VCG outcome must (implicitly) determine UCE prices,

so why not construct protocols to converge directly to UCE prices? We return to

this theme in Section 4.

2.5 Examples

The following examples illustrate the concept of CE and UCE prices and also serve

to illustrate the principle that it is often unnecessary to receive complete informa-

tion about bidder valuations to determine the Vickrey outcome. For each example,

we define a space of valuations (that contain the true valuations) that provides suffi-

cient information to determine the Vickrey outcome. The information is minimal—

we call this a minimal information set —in the sense that no relaxed constraints on

valuations are sufficient to pin down the Vickrey outcome.

Example 1

Consider a single-item auction with three bidders and values � 
  �¯®°�¯± � . The effi-

cient allocation assigns the item to bidder 1, and the Vickrey payment is $8. Prices
  @� 9 � ® are all in CE, and
9²�´³
®

is the unique anonymous UCE price. Notice

that the UCE price must be at least $8 to satisfy CE condition (1) for bidder 2 in

CAP � ��

�¯µ°�¯¶·� � but no greater than $8 to satisfy the same condition for bidder 2 in

CAP � ��µ°�¯¶·� � . The CE prices define a minimal information set, ¸7 � , defined as the

subset of valuations that satisfy constraints
� � � � 9F� � �.¹ 9F� � � ¹ 9��y
  �� 9 � ®·� .

UCE prices imply additional information
� � � �3®°� � � ¹ ®·� , which together with
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¸7 � is a minimal information set for the VCG outcome. Notice that an ascending

price (i.e. English) auction can elicit this information if bidders 1 and 2 bid up the

price to just above 8, at which point the auction terminates. Bidder 3 can remain

silent.

Example 2

Consider a combinatorial allocation problem with items
� ¬ ��º»� and 5 bidders (see

Figure 1). The efficient allocation allocates ¬ to bidder 1 and
º

to bidder 2 for

a total value of 70. The VCG payments are
9T¨�¦_© I � �2¶  ¼<½��¾B @< ±�¿ � �Àµ�¿

and9Z¨�¦�© I � �ÂÁ  Ã<���¾B n< ¿�¿ � �Äµ�¿
. Figure 1 (b) illustrates an information set on

bidder valuations, that is sufficient to compute the VCG outcome and minimal

in the sense that no constraints can be relaxed. The following prices are UCE

for any valuation in this set:
9 �:¬i� �Äµ�¿°�:9 � º � �Âµ�¿°�:9 �:¬ º � �Âµ�¿

to bidders��

�¯µ°��Á\�¯¿·�
and prices

9 � �:¬.� �=µ  �:9 � � º � �Åµ  �:9 � �:¬ º � �	Á  to bidder 3. In

fact, these prices are also minimal CE prices and the discount computed in Eq. 4 is

zero for bidders 1 and 2, and BAS is satisfied (because of the presence of bidders

4 and 5). Without these bidders, the BAS condition fails and the VCG payments

become
9{¨�¦�© I � �  and

9Z¨�¦_© I � ��µ  , which can be computed from UCE prices9 � � � µ  �  �¯µ  �� �:9 � � �: ��Á  ��Á  �� and
9 � � �: �¯µ  ��Á  �� . Additional information is

needed from bidder 2 in this variation.Æ Ç Æ»Ç
Bidder 1 30 ` 0 30
Bidder 2 0 40 ` 40
Bidder 3 0 20 40
Bidder 4 25 0 25
Bidder 5 0 25 25

(a)

minimal information set� � �:¬i�V�j� � � º � � � � �:¬i����� � �:¬ º � � � � �:¬i�V� µ�¿� � � º �V�j� � �:¬.� � � � � º �V��� � �:¬ º � � � � � º �V� µ�¿� � �:¬.� ¹  � � � � º � ¹ µ  � � � �:¬ º � ¹ Á  � � �:¬ º � ¹ µ�¿�   �:¬ º � ¹ µ�¿
(b)

Figure 1: Example 2. (a) Bidder valuations, with the efficient allocation indicated
by ` . (b) Minimal information on bidder valuations to compute the VCG outcome.
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3 The Design Space for Iterative Combinatorial Auctions

The design space for iterative CAs is larger than for one-shot auctions. Important

considerations include the design of information feedback to bidders and rules to

guide the submission of bids. Cramton (Chapter 4) provides an in-depth discussion

of many of these issues in the design of simultaneous ascending price auctions.

Let the state of an auction include all the information that is sufficient to define

the future dynamics of the auction. For example, the state of an auction can define

the ask prices, the provisional allocation, and also the bid improvement rules as

they apply to particular bidders. Briefly, we can consider the role of the following

design features:

Timing issues. Iterative auctions may be continuous, allowing bids to be submit-

ted at any time with continual updates to the current provisional allocation

and prices. Alternatively, iterative auctions may be discrete, or round-based,

with the state updated periodically and with bidders provided with an oppor-

tunity to revise bids between rounds.

Continuous auctions can promote faster propagation of feedback informa-

tion to bidders and help to quickly focus elicitation. However, continuous

combinatorial auctions can be infeasible because the winner-determination

problem must be resolved whenever a new bid is submitted. Continuous

auctions also lead to high monitoring and participation costs for bidders. In

comparison, discrete auctions allow an auctioneer to publish a schedule for

rounds in the auction and bidders can plan when to allocate time to refine

their values and bids.

Information feedback. Information feedback about the state of an auction can in-

clude information about the bids submitted and also aggregate information,

such as price feedback and the current provisional allocation, to guide bid-

ding. Information hiding is also possible, for example with rounding to limit
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the potential for signaling between bidders and with limited and discrimina-

tory reporting of bid information.

Information feedback policies make a tradeoff between serving the goal of

providing effective bid guidance and minimizing the opportunity for collu-

sion and other forms of manipulation through signaling and coordination.

Bidding Rules. Ask prices are a common form of bid improvement rule, placing a

lower-bound on the allowable bid price on a bundle. Bid improvement rules

can also require a minimal percentage improvement over the current highest

bid on a bundle, or over the total revenue in the next round given current

bids. Activity rules (Milgrom 2000) introduce further restrictions, such as

requiring that a bidder bids for a decreasing market share as prices increase

during an auction. Ausubel, Cramton and Milgrom (Chapter 5) provide an

extended discussion of bid-improvement and activity rules.

Activity rules were introduced in the early FCC wireless spectrum auctions

and proved important. È Decisions about appropriate rules are often guided

by a tradeoff between providing expressiveness so that bidders can follow

straightforward bidding strategies, while promoting early information ex-

change between bidders and limiting the opportunity for bidders to wait and

snipe at the end of an auction. Computational considerations also matter, for

example linear prices can simplify the problem facing bidders in an auction

(Kwasnica, Ledyard, Porter, and DeMartini 2004) but can be expensive to

compute (Hoffman 2001).

Termination Conditions. Auctions may close at a fixed deadline, perhaps with an

opportunity for a final sealed-bid round of bidding (sometimes called a proxy

round). Alternatively, auctions can have a rolling closure with the auction

kept open while one or more losing bidders continue to submit competitive

bids.
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Fixed deadlines are useful in settings in which bidders are impatient and un-

willing to wait a long time for an auction to terminate. However, fixed dead-

lines tend to require stronger activity rules to prevent the auction reducing to

a sealed-bid auction with bids delayed until the final round. In comparison,

rolling closure rules have been shown to promote early and sincere bidding. É
Bidding Languages. A bid can be a complex object and expressed in terms of

logical connectives (Nisan, Chapter 9). One popular bidding language is

exclusive-or (XOR), in which bid � 9 � � � � � A°Ê�Ë � 9 � � � � � A}Ê�Ë ����� A°Ê�Ë � 9vÌ5� � Ì �
has semantics “I will buy at most one of these bundles” at the stated bid

price. Another popular language is additive-or (OR) bidding languages, in

which bid � 9 � � � � � Ê�Ë � 9 � � � � � Ê�Ë ����� Ê�Ë � 9vÌ5� � Ì � has semantics “I will buy

one or more of these bundles” at the stated bid price. Bidding languages can

also place constraints on the bid prices, for example by requiring click-box

bidding in which bidders must submit bids from a menu.
�_Í

The expressiveness of a bidding language in an iterative CA must be con-

sidered together with the opportunity to refine bids during an auction. For

instance, a language that is additive-or on items is not expressive in a one-

shot CA but becomes expressive in an ascending auction when bidders can

decommit from bids.
���

Bidding languages are often designed to support

straightforward bidding with bidders able to state the bundle that maximizes

their surplus in response to prices in each round.

Proxy agents. Proxy agents provide a still richer interface for iterative CAs (Parkes

and Ungar 2000b, Ausubel and Milgrom 2002). Bidders can provide direct

value information to an automated bidding agent that bids on their behalf

within an auction. The bidder-to-proxy language should allow a bidder to

express partial and incomplete information, to be refined during the auction,

in order to realize the elicitation and price discovery benefits of an iterative

auction.
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Proxy agents can query a bidder actively when they have insufficient infor-

mation to submit bids. Proxy agents can also facilitate faster convergence

with rapid automated proxy rounds interleaved with bidder rounds. Manda-

tory proxy agents can be useful in restricting the strategy space available to

bidders.

One concern in the design of proxy auctions is to determine when to allow

proxy information to be revised and to determine the degree of consistency

to enforce across revisions. An additional concern is that of trust and trans-

parency since the bidding activity is transferred to automated agents.

4 Price-Based Iterative Combinatorial Auctions

Many iterative CAs are price based and provide ask prices to guide bidding. In this

section we survey some of these auction designs. We limit our attention to auctions

designed for valuations that are rich enough to include the substitutes valuations.

As such, we exclude the assignment model in which bidders have unit-demand for

items. See Bikhchandani and Ostroy (Chapter 8) for a taxonomy that includes this

case.

All the auctions that we discuss share the same high level structure:

In each round the auctioneer announces ask prices and a provisional allocation

and requests new bids from bidders. The bids are used to formulate a new winner-

determination problem and update the provisional allocation, and also to adjust

ask prices and test for termination.

Table 1 provides a summary of the characteristics of some well-known auc-

tions, stating properties for straightforward (non-strategic) bidding. For the cases

in which an auction terminates with the VCG outcome this assumption is justified

in an ex post equilibrium but otherwise one should expect incentives for demand

reduction. The auctions are described in terms of the structure of the price space,

the bidding language, and the method used to update prices.

16



Name Valuations Price structure Bidding Price Update Outcome
language method

KC substitutes non-anon items OR-items greedy CE
SAA substitutes items OR-items greedy CE
GS substitutes items XOR minimal min CE Î_Ï
Aus substitutes items single greedy Ð VCG

iBundle; Ascending-proxy Ñ BSM non-anon bundles XOR greedy VCG
. . . general . . . . . . . . . min CE

dVSV BSM non-anon bundles XOR minimal VCG
Clock-proxy BSM items (+ proxy) Ò XOR greedy VCG

. . . general . . . . . . . . . min CE
RAD general items OR LP-based —

A Ó BA general anon bundles XOR LP-based —
iBEA general non-anon bundles XOR greedy Ô VCG
MP general non-anon bundles XOR minimal Ô VCG

Table 1: Price-Based Combinatorial Auctions. Formal properties are stated for
straightforward bidding, and with the most general class of valuations for which
the property holds. Notation ‘—’ in the Outcome column indicates that no formal
properties have been established.

Notes:Õ Aus traces Öi×�Ø trajectories.Ù
Ascending-proxy dynamics are identical to Ú Bundle(3), although ascending-proxy
emphasizes a sealed-bid proxy auction form.Û Clock-proxy is a hybrid design, with a linear-price clock auction
followed by a sealed-bid ascending-proxy auction.Ü
Ascending price while the auction is open, followed by a downwards adjustment
after termination.

Abbreviations:
KC (Kelso and Crawford 1982) SAA (Milgrom 2000)
GS (Gul and Stacchetti 2000) Aus (Ausubel 2002)
iBundle (Parkes and Ungar 2000a) Ascending-proxy (Ausubel and Milgrom 2002)
dVSV (de Vries, Schummer, and Vohra 2003) Clock-proxy (Ausubel and Milgrom, Chapter 5)
RAD (Kwasnica et al. 2003) A Ó BA (Wurman and Wellman 2000)
iBEA (Parkes and Ungar 2002) MP (Mishra and Parkes 2004)

We see a wide variety of prices, from simple prices on items (linear prices) to

non-anonymous prices on bundles (non-anonymous and non-linear). In addition,

the auctions vary in the bids that a bidder can submit in each round: OR-items, an

additive-or bid for multiple items; XOR, an exclusive-or bid for multiple bundles;

single, a bid on a single bundle in each round; OR, an additive-or bid for multiple
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bundles. The XOR language has emerged as the definitive choice in recent designs.

The price-update methods, which characterize the rules by which prices are

computed in each round, are broken down as follows:

Greedy update: The price is increased on some arbitrary set (perhaps all) of the

over-demanded items or bundles.

Minimal update: The price is increased on a minimal set of overdemanded items,

or based on the bids from a set of minimally undersupplied bidders.

LP-based: A linear program, formulated to find prices that are good approxima-

tions to CE prices given current bids, is used to adjust prices.

For linear prices, Demange, Gale and Sotomayor (1986) in the assignment

model and later Gul and Stacchetti (2000) for substitutes define a minimal update in

terms of increasing the prices on a minimal overdemanded set of items.
� � Minimal

price updates are adopted to drive prices towards minimal CE prices. de Vries,

Schummer and Vohra (2003) generalize this to define updates in terms of minimally

undersupplied bidders
� � and define a minimal update for general CAs. All bidders

in a minimally undersupplied set face higher prices on the bundles for which they

submitted a bid.

RAD and A Ý BA adopt LP-based price updates and adjust prices to find good

approximations to CE prices given current bids and the current provisional alloca-

tion. RAD seeks linear and anonymous prices while A Ý BA seeks non-linear but

anonymous price approximations. Formal convergence properties have not been

proved for RAD or A Ý BA, although RAD reduces to a simultaneous ascending

price auction for substitutes valuations.

The auctions that are able to implement the VCG outcome (for instance, Aus

for substitutes and dVSV for BSM coalitional values) are interesting because they

bring straightforward bidding into an equilibrium. Straightforward bidding is a best

response, whatever the valuations of other bidders, as long as the other bidders
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also follow a straightforward (perhaps untruthful) bidding strategy. This ex post

equilibrium concept is useful because it places no requirements on the knowledge

that bidders have of the valuations of other bidders.

Winning bidders pay their final bid price in all auctions except Aus, iBEA and

MP. Aus allows for � ( k 
 � restarts and uses information elicited along each tra-

jectory to determine the final payments. iBEA and MP terminate with UCE prices,

at which point final payments are determined through downwards adjustments.

Auction clock-proxy (Ausubel, Cramton and Milgrom Chapter 5) is a hybrid

auction. The first stage maintains item prices and runs an ascending-clock CA (see

also Porter, Rassenti, and Smith (2003)). This stage is used for price discovery and

can be considered to construct approximate linear CE prices. The second stage is

sealed-bid, with bids from the first stage combined with additional bids that must

be consistent with bids from the clock phase.

4.1 Insufficiency of Simple Prices

It is interesting to consider what form of prices are necessary to implement effi-

cient ascending CAs. Gul and Stacchetti (2000) first addressed this question, in

the setting of substitutes valuations. The authors provide a formal definition of an

ascending CA, but limit attention to linear and anonymous prices. They show that

there exists no ascending VCG auction with linear and anonymous prices for sub-

stitutes valuations. The auction due to Ausubel (2002) lies outside of this negative

characterization because it uses
( k 
 price trajectories.

Recently, Mishra and Parkes (2004) used the UCE-based price characteriza-

tion to demonstrate that efficient ascending CAs require both non-anonymous and

non-linear prices, even for this case of substitutes valuations. The authors exhibit

instances for which only non-anonymous and non-linear UCE prices exist. As for

sufficiency, auctions dVSV and iBundle are examples of ascending VCG auctions

for substitutes valuations that maintain these rich prices.

However, de Vries, Schummer, and Vohra (2003) extend the definition of as-
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cending CAs in Gul and Stacchetti (2000) to allow for non-anonymous and non-

linear prices and obtain a negative result. When at least one bidder has a non-

substitutes valuation an ascending CA cannot implement the VCG outcome even

when the other bidders are restricted to substitutes and even with non-anonymous

and non-linear prices. Auctions iBEA and MP lie outside of this negative char-

acterization because they allow a final downwards adjustment to determine final

prices.

Thus, with substitutes values but simple prices we must accept auctions with

multiple trajectories or non-monotonic adjustments. Moreover, although rich prices

extend the reach of ascending CAs to substitutes values we still need to accept mul-

tiple trajectories or non-monotonic adjustments to handle richer preferences than

substitutes.

4.2 Primal-Dual Auction Design

Many traditional combinatorial optimization problems can be solved with primal-

dual algorithms. A primal-dual approach uses linear-programming (LP) duality to

formulate an optimization problem as a satisfaction problem. Strong LP duality

states that a pair of feasible primal and dual solutions are optimal if and only if

they satisfy complementary slackness (CS) conditions. We provide a brief review

of LP theory at the end of this chapter, and refer the reader to Papadimitriou and

Steiglitz (1998) for a textbook treatment.

In fact, primal-dual theory also provides a useful conceptual framework for

the design of iterative price-based CAs. Prices are interpreted as a feasible dual

solution and the provisional allocation is interpreted as a feasible primal solution.

Bids provide sufficient information to formulate and solve restricted primal and

dual problems, the winner-determination and price-update problems respectively

(see Figure 2). For further discussion of this idea, see Parkes (2001), de Vries,

Schummer and Vohra (2003) and Bikhchandani and Ostroy (Chapter 8).

Straightforward bidding is first assumed, and later justified by termination with

20



Initial
Dual 
Solution
(prices)

Compute

NO

x’

Terminate Bids
Receive

(allocation)

Adjust Dual 
Solution

y
(prices)

Feasible
SolutionPrimal

Do x’and

conditions?
satisfy CS

yYES

Figure 2: A Primal-Dual Interpretation of an Ascending CA.

VCG payments. The winner-determination problem uses information implicit in

bids to compute a feasible solution that minimizes the violation of the CS condi-

tions, and price updates adjust the dual solution towards an optimal dual solution.
�  

CS conditions have an exact equivalence with conditions (1) and (2) required for

CE prices, and are satisfied on termination of an auction.

Constructively, primal-dual auction design requires the following steps:

1. Formulate an LP for the CAP that is integral, such that its optimal solution

is a feasible allocation. The dual problem should allow convergence to UCE

prices, or to minimal CE prices that support VCG payments in the case of

BAS valuations.

2. Provide bidders with a bidding language that is expressive for straightfor-

ward bidding, and formulate a winner-determination problem to compute

a feasible primal solution that minimizes the violation of CS conditions as

represented in bids.

3. Terminate when the provisional allocation and ask prices satisfy CS condi-

tions (and thus represent a CE), and also satisfy any additional conditions

that are necessary to compute the VCG payments at termination (e.g. UCE
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Figure 3: Adjusting towards the VCG outcome in price-based iterative CAs.
CE prices lie within the shaded regions.

conditions or minimal CE prices). Otherwise, adjust prices to make progress

towards an optimal dual solution that satisfies these conditions.

The characterization of VCG payments in terms of minimal CE and UCE prices

suggests two methods to adjust towards the VCG outcome. The methods are illus-

trated in Figure 3, which considers the price on bundles, � � and � � , allocated to

bidders 1 and 2 in the efficient outcome.

In case (a), the coalitional value function satisfies BSM and the VCG pay-

ments are supported at the minimal CE prices. Ascending CAs (such as dVSV)

can converge monotonically to these prices and the VCG outcome. In case (b), the

coalitional value function satisfies neither BSM not BAS. Although each bidder’s

VCG payment is supported in some minimal CE there is no single CE that supports

the VCG payment to both bidders simultaneously. As illustrated, ascending CAs

such as iBEA and MP can still converge monotonically to UCE prices from which

the VCG outcome can be determined in a final adjustment.

The next section presents a case study of primal-dual methods to the design

and analysis of the iBundle auction.
� ¤ In Section 4.4 we return to the auctions in

Table 1, and discuss each in a little more detail.
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4.3 Case Study: iBundle

We will focus on variation iBundle(2), in which prices are non-linear but anony-

mous. This variation is efficient with straightforward bidding and an additional

requirement that bidder strategies satisfy a “safety” property. Later, we also briefly

describe iBundle(3), which employs non-linear and non-anonymous prices and is

efficient without the safety condition.

The interested reader is referred to Parkes and Ungar (2000a) and Parkes (2001)

for additional details, including a description of iBundle(d), which blends iBundle(2)

and iBundle(3) and allows for dynamic price discrimination decisions to be made

during the auction. In what follows, we will use iBundle to refer to variation

iBundle(2) unless otherwise stated.

" Bundle(2): Anonymous Prices

iBundle maintains ask prices on bundles and a provisional allocation and proceeds

in rounds, indexed Þ�� 
 . In each round a bidder can submit XOR bids on bundles.

In general the bid price on a bundle must be at least the ask price. Bidders must

resubmit bids on any bundle that they are winning in the current provisional allo-

cation but can bid at the same price on such a bundle even if the ask price has since

increased. A bidder can also bid at ß less than the ask price when making a “last-

and-final” bid, at which point she can no longer improve her price. Equivalently,

one can simply retain all bids from previous rounds. A bid at, or above, the current

ask price is said to be competitive, and a bidder is competitive if she submits at

least one competitive bid.

The winner-determination problem in each round is to compute a provisional

allocation to maximize the seller’s revenue given bids, with at most one bundle

selected from the XOR bid of each bidder. Let à � denote the bids from bidder " ,
and

9váãâKä I � ����� denote the bid price on bundle ��#åà � . Winner determination can be
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formulated as the following mathematical program:

>�?BAæyç ErC·N O �QPSR OC P�è çyé � �����
9{áSâKä I � �����

W �KX�� OC PBè ç�é � ����� ¹


��] " (5)

O �QPSR OC P�è ç:ê [ P C é ������� ¹


��]}^

(6)

é �������V# �  �y
B�6� ] " �d] ��#åà)�
Constraint (5) restricts the seller to selecting at most one bid from each bidder.

Constraint (6) ensures the allocation is feasible. Ties are broken first to favor the

allocation from the previous round and then to maximize the number of winning

bidders.

iBundle terminates when each competitive bidder receives a bundle in the pro-

visional allocation. Otherwise, prices are increased, by ß above the bid price on all

bundles that receive a bid from some losing bidder in the current round and the new

allocation and prices are provided as feedback to bidders. Prices on other bundles

are implicitly adjusted to satisfy free disposal, although only bundles that receive

losing bids need to be explicitly quoted. On termination the provisional allocation

becomes the final allocation, and bidders pay their final bid prices.

iBundle maintains feasible primal and dual solutions to an extended LP for-

mulation of CAP and terminates with a CE outcome that satisfies CS conditions.

The proof technique is inspired by Bertsekas’ (1987) analysis of the AUCTION

algorithm for the special case of unit-demand valuations.

Given ask prices,
9 � ����� , to bidder " we define ß straightforward bidding in

terms of an ß -demand set, ß -DS, which is:

ß � � � 9 � � ��� �!�p� � �����a< 9 � �����lkjßs� >@?BAC q �Q� � ��� t �)< 9 � ��� t � �  �� �d] �+* �;�
( ß -DS)

In words, bidders state in their bid all bundles that come within ß of maximizing

their surplus given prices in each round. This reduces to straightforward bidding

for a small enough ß .
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Definition 5 (Safety). The competitive bundles in the ß -demand set of each losing

bidder in each round are non-disjoint, i.e. each pair of bundles shares at least one

item.

For example, losing bids
� �:¬ º@ëp��³°
  � �� � � ë �»ì ��³
¿  �� � from a single bidder

satisfy safety, while losing bids
� �:¬ º@ëp��³°
  � �� � � �»ì ��³
¿  �� � from a single bidder

fail the safety condition.

Theorem 6. (Parkes and Ungar 2000a) iBundle(2) terminates with an allocation

that is within
¶ >@íïî � (a��� ��ß of the efficient solution for ß -straightforward bidding

strategies and with bid safety.

The first step of the proof is to introduce an extended LP formulation (LP � ) for

CAP due to Bikhchandani and Ostroy (2002, see also Chapter 8). LP � is integral

when the safety condition holds for straightforward bidding. The dual formulation

(DLP � ) has variables that correspond to anonymous and non-linear prices.

Let � denote the set of feasible partitions. For example, �:¬ ��º»��ë � and �:¬ ºÃ��ë �
are feasible partitions for items ¬ º@ë . Variable ðñ�5ÝZ� �ò
 will indicate that the al-

location must be restricted to bundles in partition Ý²#å� . For example, if partition

�:¬ ºÃ��ë � is selected then the only valid allocations are those in which ¬ º goes to

some bidder and
ë

to another bidder. We have:

>@?BAæyç ErC·N:I óyErô�N OC\|{~ O �QP�R é � �����õ� � ����� [LP � ]
W �KX�� OC\|{~ é � ����� ¹ 

� ] "

O �QPSR é � ����� ¹ Oô P�� ê C P ô ðñ�5ÝZ�
� ] �

Oô P�� ðö�5ÝZ� ¹



é � ����� � ðö�5ÝZ���� � ] " � � � Ý
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>@íïî÷ ç I ø
ErC·N:I ùTú O �QPSR u � kjwpx [DLP � ]
W �KX�� u{�\k 9 �����V�j�
�K����� � ] " � �
w.x�< OC P ô

9 �����V�� � ] Ý
u � �:9 ����� � wpxp�� � ] " � �

Dual variable
9 ����� can be interpreted as the ask price on bundle � . Then,

optimal u `� � >@?BA C � � � ���;�.< 9 ����� �  � defines the maximal payoff to bidder "
across all bundles given prices, and optimal w `x � >@?BA ô P
� e C P ô 9 ���;� defines the

maximal revenue to the seller across all partitions given prices. This is also the

maximal revenue across all allocations because prices are anonymous.

The dual problem sets prices to minimize the sum of the maximal payoff to

each bidder and the maximal revenue to the seller. Optimal dual prices will corre-

spond to CE prices whenever the primal LP is integral.

Interpret the provisional allocation and ask prices in a round of iBundle(2) as

defining a feasible primal and a feasible dual solution (denoted ¸é � ¸ð � ¸ul� � ¸9�� and ¸w x ).
We can now establish termination with CS conditions for straightforward bidding

strategies.

The first primal CS condition is:

¸é � ������ûf ¢ü ¸uZ�{k ¸9 ���;� � �
� ���;� � ] " � � (CS-1)

This states that any bundle allocated to bidder " must maximize her payoff

across all bundles at the prices. Condition (CS-1) is approximately satisfied in

every round because the provisional allocation is selected with respect to bids,

which are in turn drawn from ß demand sets. Formally, a relaxed form of condition

(CS-1) holds, with ¸é � �����Vû+ &ü ¸u � k ¸9 ����� ¹ � � �����lk µ ß , for all " and � .

The second primal CS condition is:

¸ðñ�5ÝZ��û� ýü ¸w x < OC P ô ¸
9 ����� �  � ] Ý (CS-2)
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This states that the provisional allocation must maximize the seller’s payoff

(i.e. revenue) given the prices, across all feasible allocations and irrespective of

bids received from bidders.

Bundle � has a strictly positive price if it is greater than the price on every

bundle contained in � . Then, (CS-2) follows from properties (P1) and (P2), which

are maintained in each round of the auction:

(P1) All bundles with strict positive prices receive a bid from some bidder in every

round.

(P2) One or more of the revenue-maximizing allocations in every round can be

constructed from bids from different bidders.

Formally, (P1) follows because one can show that a losing bidder will continue

to bid for � in the next round, even at the higher price. Property (P2) follows

from the safety property, which prevents a single bidder from causing the price to

increase on a pair of disjoint bundles. This is why we need the safety condition.

Combining (P1) and (P2), and together with ß -DS, we get a relaxed formulation

of (CS-2), with ¸ðö�5ÝZ�.û� 3ü ¸wpxV< e C P ô ¸9 ����� ¹ >�íïî � ����( ��ß , for all partitions

Ýn#å� .

Dual CS condition (CS-3), states:

¸u � û� ýü OC\|vþ ¸é � ����� �ÿ

� ] " (CS-3)

In words, every bidder with positive payoff for some bundle at the current

prices must receive a bundle in the provisional allocation. (CS-3) is satisfied for

all bidders that receive bundles in a particular round, but not for the losing bidders

that are still competitive. However, (CS-3) holds for every bidder on termination

because at this point ßM<���� � 4 for all losing bidders.

(CS-3) and (CS-1) are equivalent to CE condition (1) and (CS-2) together with

an additional requirement that a provisional allocation is always selected is equiv-

alent to CE condition (2).
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Finally, we obtain an upper-bound on the worst-case efficiency error of iBundle,

in terms of the minimal bid increment ß . First, sum the approximate (CS-1) condi-

tion over all bidders in the final allocation, and substitute ¸u � �  for bidders not in

the allocation by (CS-3). This gives:

O �QPSR ¸uZ� ¹ O �-P�R �
��� ¸�T�_��< O �-P�R ¸
9 � ¸�T�_�ök µ >�íïî � ����( ��ß (7)

ü ¸w.xFk O �QPSR ¸u � ¹ O �-P�R � � �{¸� � �ök
¶ >@íïî � ����( ��ß (8)

where Eq. (7) follows because an allocation can include no more bundles than there

are items or bidders, and Eq. (8) is by substitution of the ß -approximate (CS-2)

condition.

The LHS of Eq. (8) is the value of the final dual solution, and the first-term

on the RHS is the value of the final primal solution. Now, ¸w.x;k e � ¸u � �ÿ�/�U%�� ,
(the value of the optimal primal) by LP weak duality, and therefore �/�U%�� ¹ ¸w.x�ke � ¸uZ� ¹ e � �B��� ¸�T�_�ök ¶ >@í î � ����( ��ß . ��

A complete proof must also show termination. The basic idea is to assume the

auction never terminates and prove that a bidder must eventually submit a bid at

a price above her valuation, assuming finite values and a finite number of items,

from which we get a contradiction with straightforward bidding.

" Bundle(3): Non-anonymous Prices

iBundle(3) is the variation of iBundle in which each bidder faces non-anonymous

prices in every round. The dynamics of iBundle(3) with straightforward bidding

are identical to that of Ausubel and Milgrom’s (2002) ascending-proxy auction,

although ascending-proxy is not described in price terms. iBundle(3) is efficient for

straightforward bidding with general values. Moreover, the auction will terminate

with VCG outcomes for BSM coalitional value functions.

Let
9���
	�� I � ���;� denote the ask prices to bidder " in round Þ . Initially,

9 ��
	
� I � ����� �  
for all bundles � and all bidders. Bids are received, and the winner determination
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problem solved, as in iBundle(2). Then, for each bidder not in the provisional

allocation, the price to that bidder is increased by the minimal bid increment, ßfû� ,
above her bid price on all bundles submitted in that round, and adjusted for free-

disposal.

It is now quite immediate to establish that iBundle(3) terminates in CE with

straightforward bidding. The prices faced by a bidder in round Þ are parameterized

by u �� �3 , which can be interpreted as the maximal payoff to the bidder in that

round. The ask price on bundle � in round Þ is defined as:

9 � �
	�� I � ����� � >@?BA �: � � � �����a<�u �� � (9)

Initially, u �� � >@?BA C � �
������� � , for all " , and the price is zero on all bundles. The

payoff u �� decreases monotonically during the auction and prices monotonically

increase. The ß -DS for bidder " in round Þ includes every bundle for which � � �����V�
u �� , and increases monotonically across rounds. Eventually, when u �� is less than ß
the prices on each bundle are within ß of her value and she will bid for every bundle

with positive value in her ß -DS.
� ­

Condition (CS-1) holds trivially in each round and (CS-3) holds at termination,

just as in iBundle(2). In addition, (CS-2) holds in each round because of the special

structure of prices: every bundle with a strict positive price receives a bid in a

bidder’s ß -DS. This does not require the safety condition.

Theorem 7. (Parkes and Ungar 2000a) iBundle(3) terminates with an allocation

that is within
¶ >@íïî � (a��� ��ß of the efficient allocation for ß -straightforward bidding

strategies and with bid safety.

Theorem 8. (Ausubel and Milgrom 2002) iBundle(3) terminates with minimal CE

prices and the VCG outcome for BSM valuations and straightforward bidding.

Proof. Consider an arbitrary bidder
^
, and let uö[ denote her payoff in the minimal

CE prices. Refer to the bidders in the provisional allocation in round Þ as the

winning coalition. We prove that the payoff, u �[ to bidder
^

in any round Þ satisfies
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u �[ � u [ . First, bidder
^

must be in the winning coalition in any round in which

u �[�� u{[ . To see this, consider a coalition � ��% , with
^��# � , and observe that the

revenue to the seller from coalition � in round Þ is exactly ���:���;< e �-P « u �� from

Eq. (9). Then,

���:����< O �QP « u
�� � ���:���)< O �-P « u

�� k � u [ < u �[ �
� ���:���)< O�QP «���� [�� u

�� kc���U%V�)<��/�U%�b ^ � (10)

¹ ���:���)< O�QP «���� [�� u
�� kc���:� m ��^}� �a<��/�:��� (11)

� ���:� m ��^\� �a< O�QP «���� [�� u
��

where Eq. (10) follows from the equivalence between maximal payoff and VCG

payoff for BSM valuations and Eq. (11) follows from the BSM condition. Thus,

the payoff to bidder
^

cannot fall more than ß below uö[ (since the bidder always

wins, and its prices are unchanged), and prices converge to the minimal CE prices

as ß��Â . ��

An ex post equilibrium is invariant to the values of bidders, i.e. straightforward

bidding is an equilibrium even ex post once every bidder knows the values of other

bidders.

Theorem 9. Straightforward bidding is an ex post equilibrium of iBundle(3), and

the auction is efficient, for BSM valuations.

This result requires that the revealed preferences by a bidder are consistent

with some valuation during the auction.
� È Given this, we can fix the reports � ¡ �

of other bidders. If bidder " follows a straightforward strategy the auction imple-

ments the VCG outcome because valuations satisfy BSM. Moreover, if bidder "
reports some other valuation ¸� � h� � � the auction implements the efficient alloca-

tion for � ¸� � � � ¡ � � and CE prices that are at least the bidder’s Vickrey payment in

that outcome. Thus, bidder " ’s best-response is straightforward bidding because her
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payoff in the truthful Vickrey outcome dominates her payoff in any other Vickrey

outcome, and therefore also in this alternate CE outcome.

4.4 Ascending Price Combinatorial Auctions

Perhaps the defining feature of the iBundle family of auctions is that they allow

non-linear, and sometimes non-anonymous ask prices. Only the dVSV, iBEA and

MP auctions have a similarly rich class of prices. The other auctions in Table 1

maintain simpler prices, typically anonymous and often linear.

In describing the auctions we group together auctions KC, SAA, GS and Aus

because they are all designed to handle the special case of substitutes valuations.

Then we briefly discuss dVSV, which is designed for a BSM coalitional value

function, and is presented in detail in Bikhchandani and Ostroy (Chapter 8). The

ascending-proxy auction is a sealed-bid implementation of iBundle(3) with inter-

esting theoretical properties, and will be discussed along with other proxied auc-

tions in Section 5.2 and presented in more detail in Ausubel and Milgrom (Chapter

3). Finally, we describe the clock-proxy, iBEA and MP auctions, which are de-

signed for general valuations.

Special-Case: Goods are Substitutes

Recall that linear CE prices exist for substitutes valuations, but that non-linear

and non-anonymous prices are still required to support VCG payments, even for

substitutes.

Auction KC was first described in the setting of a matching problem, with

multiple firms and multiple workers. The matching problem can be reinterpreted

as an allocation problem with each firm corresponding to a bidder and each worker

to an item. Bidders can submit bids for multiple items in each round. Winner

determination allocates all items that receive bids and prices are increased on over-

demanded items. The auction converges to a competitive equilibrium outcome and

an efficient allocation for straightforward bidding. Kelso and Crawford (1982) do
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not investigate strategic behavior or the relationship between the outcome and the

VCG payoffs.

Auction SAA is closely related to KC in that bidders can submit bids for mul-

tiple items and the bid on an item must be repeated if it is winning. However, SAA

maintains anonymous prices and is distinguished in its careful use of activity and

bid-improvement rules. The auction design forms the basis of the series of FCC

wireless spectrum auctions.

Auction GS adopts the same basic methodology as KC, except that prices are

anonymous and increased on a set of minimal overdemanded items. This provides

termination with minimal CE prices when bidders are straightforward. Just as

in KC and SAA, these prices do not support the VCG outcome for substitutes

valuations and straightforward bidding is not an equilibrium.

Auction Aus is unique amongst the auctions for substitutes valuations in its

ability to terminate with the Vickrey outcome. Ausubel (2002) achieves this de-

spite using only anonymous item prices by running
( k 
 separate auctions, each

with its own price trajectory. Information across each auction is used to adjust

final payments to VCG payments. Let �
� ¡ � ��������� � ¡ z � �¼� , denote the sequence

of auctions in Aus, with bidder " excluded from participation in auction � ¡ � . All

bidders are invited to participate in the final auction. The allocation is determined

in auction � , but the payment by bidder " is determined from the price and bid-

ding dynamics in auctions � ¡ � and � . The dynamics in � ¡ � are used to adjust

downwards the final payment for bidder " .
Bidder Submodular

Auction dVSV is similar to iBundle, with bids for XOR sets of bundles and prices

that are non-linear and non-anonymous and increased based on bids from losing

bidders. However, the price update rule is different. dVSV increases prices on the

set of minimally-undersupplied bidders. This set can include bidders that are in

the current provisional allocation, as well as losing bidders, and is different from
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the set of losing bidders on which prices are adjusted in iBundle. Although there

has been no computational study, de Vries, Schummer, and Vohra (2003) argue by

analogy to algorithms in the optimization literature that dVSV will converge more

quickly than iBundle.
� É In iBundle’s favor is that the price-update step is simple to

explain to bidders and easy to compute.

General-Purpose CAs

RAD and A Ý BA are general-purpose ascending CAs, designed without restric-

tions on agent valuations. Although an equilibrium analysis is not available for ei-

ther auction their performance has been evaluated experimentally, through human-

based laboratory studies and through computational simulation. Both auctions for-

mulate an LP to adjust prices. A Ý BA provides non-linear prices and supports an

XOR bidding language while RAD provides linear prices and supports an OR bid-

ding language.

A competitive equilibrium perspective provides a unifying view of the auc-

tions. Recall that CE prices in CAP must be both non-linear and non-anonymous

in general. One can interpret A Ý BA as an iterative procedure to determine anony-

mous and non-linear prices that approximate CE prices, and RAD as an iterative

procedure to determine anonymous and linear prices that approximate CE prices.

The bidding rules and winner-determination step in A Ý BA are much as in

iBundle. Each bidder submits an XOR bid, from which the winner-determination

problem is formulated. A Ý BA differs from iBundle in the price-update step, which

is parameterized with  ¹ Ý ¹ 
 .
Let � �¢� ��� �� �������M� � �z � denote the provisional allocation in round Þ , 9���
	
� �����

denote the ask price on � , � � ��� t t � � t � ��9 � ��� t t �S< 9 � ��� t � denote the price difference

between bundle � t t and bundle � t , � �
denote the current winners, and ��� � � 9 � �
	
� �

denote the bids submitted by bidder " in response to ask prices. A Ý BA computes

prices for period Þ}k 
 that will maintain CS condition (CS-1) for all bidders, given

the demand-set information in their most recent bid.
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In particular, prices
9 � £ ��
	�� ����� are computed to satisfy:

a)
9 � £ ��
	�� �����V� 9 � ���;� , for all bundles �j# � � that receive bids from some losing

bidder, " �#!� �
.

b) � � £ � ����t t � �)tï�ý�"� � ����t t � ��t � for any pair of bundles �at t � ��t , such that �)t is

allocated to a winning bidder "�#!� �
, and that bidder also bids on ��t t .

These prices are not unique in general, and A Ý BA breaks the tie by selecting a

convex combination of prices, with
9 � £ ��
	�� ����� � � 
 <åÝZ� 9 � £ � ���;�°k�Ý 9#� £ � ����� , where9 � £ � ����� and

9 � £ � ����� are the minimal and maximal prices that satisfy conditions a)

and b), for some parameter  ¹ Ý ¹ 
 .
Finally, new bids must improve the price by a minimal bid increment ßfû� on

at least one bundle. The Ý �Å

variation, with price adjustments

9$� £ � is thought

to have better incentive properties (Wurman and Wellman 1999), and empirical

analysis has demonstrated high efficiency with straightforward bidders (Wurman

and Wellman 2000).

RAD provides an additive-or (OR) bidding language, and winner determi-

nation is formulated to allow multiple bids to be accepted from any one bid-

der (Kwasnica, Ledyard, Porter, and DeMartini 2004). Straightforward bidding

is well defined for the OR language when valuations have additive-or seman-

tics (e.g. when the bidder’s value for a disjoint combination of packages is the

sum of the individual package values).
��Í

However, this OR language is not al-

ways expressive for straightforward bidding. For example, a bidder with valuation

�:¬ ºÃ��³
µ  �� � � ë � ��³
µ  �� � �:¬ º¼ë � ��³
µ  �� facing prices �:¬ ºÃ��³°
  �� and � ë � ��³°
  �� can

not represent her best-response demand set (either ¬ º or
ë �

but not both) with

an OR language.

RAD maintains linear and anonymous prices and formulates the price up-

date as a series of LPs. The methodology is close in spirit to methods due to

Rassenti, Smith and Bulfin (1982), where approximate prices are computed in a

one-shot CA.
�ã�

Let � � � ��� �� ��������� � �z � denote the provisional allocation computed

in round Þ . RAD computes new linear prices that exactly match the bid price for
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all winning bids, with
e [ P C&%ç 9 � £ ��
	�� � ^ � �+9 �áSâKä I � ��� �� � , and minimize the maximal re-

gret across losing bids, with regret defined as the difference >@?BA �  �:9'�áSâKä I � �����V<e [ P C 9 � £ ��
	
� � ^ � � . Ties are broken first to lexicographically lower the regret on as

many losing bids as possible, and then on prices for items in winning bids to max-

imize the minimal price on each such bundle. This procedure ensures a unique

solution and is designed to provide bidders with informative signals.

Experimental results in a laboratory with human bidders demonstrate that RAD

achieves higher efficiency than non-combinatorial auctions (Banks, Ledyard, and

Porter 1989). In addition, RAD is demonstrated to terminate with fewer rounds

than the SAA design, which typically has fewer rounds than simple ascending-bid

CAs (Cybernomics 2000).

Auctions iBEA (Parkes and Ungar 2002) and MP (Mishra and Parkes 2004)

are general purpose ascending Vickrey auctions. iBEA extends iBundle(3) to ad-

just past the first set of CE prices and achieve UCE prices with straightforward

bidding. This provides enough information to adjust downwards to VCG payments

upon termination, bringing straightforward bidding into an ex post equilibrium for

general values. Similarly, MP extends the minimal price update rule in dVSV, to

ensure that the auction terminates with UCE prices. The same tradeoff occurs be-

tween iBEA and MP as occurs between iBundle and dVSV. Although one should

expect MP to converge more quickly than iBEA, each price update in iBEA is

simple to compute and easier to explain to bidders.

5 Non Price-Based Approaches

We survey three examples of non price-based approaches to iterative CA design.

These auctions do not require that bidders submit bids in response to ask prices.

Instead, they include richer query models and are structured fundamentally dif-

ferent than ascending-price auctions. The auctions fall into one of the following

categories:

Decentralized Approaches. The winner determination problem is moved to the
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bidders, who are responsible for submitting bids and also computing allo-

cations of items with high revenue given existing bids. The Adaptive User

Selection Mechanism (AUSM) (Banks, Ledyard, and Porter 1989), a contin-

uous auction in which winner determination is distributed to bidders, pro-

vides a canonical example.

Proxy Auctions. Proxy agents, which automatically submit bids through a pre-

determined bidding procedure, provide an interface between bidders and an

auction. Bidders provide incremental value information to proxy agents,

which may query bidders actively.

Direct-Elicitation Approaches. (Conen and Sandholm 2001) Explicit queries are

formulated by the auctioneer (perhaps in a decentralized way), and a bidder’s

strategy determines how to respond to these queries. Multi-party elicitation

approaches are used to ensure that information reported by one bidder can

be used to refine the queries asked of another bidder.

There is perhaps some ambiguity between the proxy auctions approach and

the direct-elicitation approach. We choose to reserve the term proxy auction to

settings in which the proxy agents are restricted to following a straightforward bid-

ding strategy in an auction protocol. Direct-elicitation methods may also distribute

elicitation to individual proxy agents. However, the proxies in direct-elicitation in-

teract with a richer centralized protocol (more akin to a computational procedure),

that can itself be designed with knowledge that it will be interacting with automated

proxy agents.

5.1 Decentralized Approaches: The AUSM Design

AUSM is a continuous auction that maintains a list of provisional winning bids and

a standby queue. This standby queue contains bids that have been submitted but

are not provisionally winning, and is designed to allow bidders to coordinate their

bids. A bidder can always submit a bid to the queue and can also suggest a new
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combination of bids from the queue that provide more revenue than the current

allocation. This proposed allocation becomes the new provisional allocation. The

bidding language within the queue is implicitly additive-or and bidders are unable

to place logical constraints between multiple bids in the queue. AUSM terminates

after a period of quiescence.

AUSM distributes the winner-determination computation across the bidders.

The auctioneer is only required to verify that a new provisional allocation is better

than the current allocation and that it is formed from bids in the standby queue.

Related ideas are found in the work of Brewer (1999) and the PAUSE auction

(Land, Powell and Steinberg, Chapter 6).

On one hand, this decentralization can remove a computational bottleneck from

iterative CAs. On the other hand, this decentralization can bias the outcome in favor

of technologically sophisticated bidders better able to solve larger optimization

problems. See Pekeč and Rothkopf (Chapter 16) and Parkes and Shneidman (2004)

for an additional discussion of the incentive aspects of decentralized approaches to

solving the winner-determination problem.

Another potential concern with AUSM is that bidders must be able to process

the disaggregated feedback provided in the auction, in the form of submitted bids.

Nevertheless, AUSM has been demonstrated to provide better allocative efficiency

than a non-combinatorial auction in experiments with human bidders (Banks, Led-

yard, and Porter 1989).

5.2 Proxied Auctions

Proxied auctions include automated proxy agents which interface between bidders

and the auctioneer and submit bids following a predetermined procedure. In an

ascending CA the proxies typically follow straightforward bidding strategies. If

a proxy agent is following a first-best strategy (i.e. the bidding strategy that an

agent would follow with full information about a bidder’s value), then it must elicit

enough information to compute a best-response to prices in each round.
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At one extreme, each proxy agent can require direct and complete revelation at

the start of the auction (Ausubel and Milgrom 2002, also Chapter 3). Of course,

this reduces the auction to a sealed-bid auction. However, when combined with

a bidder-to-proxy interface that allows bidders to provide incremental value infor-

mation, proxied auctions suggest a paradigm shift in iterative CAs from indirect

revelation (e.g. via best-response bids to prices) to incremental but direct revela-

tion (Parkes 2001, section 7.5).

Proxy agents can maintain partial information about valuations. For instance,

this information could be in the form of exact values for a subset of bundles, or

approximate values for each bundle. Proxy agents can decide when to query and

when to bid, based on a model of costly elicitation.

The bidder-to-proxy interface need not be constrained to logical languages such

as XOR or OR, and can be adapted to suit the local problem of a bidder. For

example, a bidder in a logistics problem can define the constraints and costs for

her local business problem. The ability to support this kind of expressiveness can

prove decisive in practice.
���

In addition to enriching the bidding language, proxy auctions can also offer the

following advantages:

a) Proxy auctions can restrict the dynamic strategies available to bidders, for

example by enforcing straightforward bidding based on reported valuations and

by requiring consistent information-revelation to proxies (see Section 7.5, Parkes

2001, and Ausubel and Milgrom 2002).

b) Proxy auctions offer opportunities for accelerated implementations of auc-

tions, because there can be multiple fast “proxy rounds” of bidding interleaved with

a few “human rounds” to refine proxy’s value information, see Hoffman, Menon,

van der Heever, and Wilson (Chapter 17) and Wurman, Zhong and Cai (2004).
� �

In imposing strong activity rules, for instance to require that a bidder provides

a consistent response to queries during an auction, one must allow for bidder mis-

takes and also for bidders that might be adjusting their beliefs about value as they
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receive feedback (e.g. in a correlated value setting). Ausubel, Cramton and Mil-

grom (Chapter 5) advocate using a relaxed consistency rule to provide incentives

for early demand revelation while allowing for these other effects.

5.3 Direct-Elicitation Approaches

A direct-elicitation approach formulate queries about bidder valuations, to which

bidders are expected to respond (although not necessarily truthfully). Queries are

typically interleaved across bidders so that the queries asked of one bidder can be

selected given responses by other bidders. In this way, complete elicitation can

be avoided through focused elicitation on interesting parts of the allocation space.

Sandholm and Boutilier (Chapter 10) provide an extended discussion of direct-

elicitation methods for the design of iterative CAs.

The query process in direct elicitation can be fully integrated within a winner-

determination algorithm to determine whether enough information is available to

implement an efficient allocation (Conen and Sandholm 2001, e.g.). The query

process may also be defined through an algorithmic technique that does not have

a very natural analogue with traditional auction designs, such as computational

learning theory (Zinkevich, Blum, and Sandholm 2003, Lahaie and Parkes 2004a).

Example queries can include: “is bundle � � preferred to bundle � � ?”; “is your

value on bundle � � at least $100?”; and “what is your value on bundle � � ?.” The

goal is to ask the minimal number of queries required to determine the efficient

allocation and perhaps also to determine the VCG payments. Computing the VCG

payments brings truthful response by bidders into an ex post equilibrium.

We know that any elicitation process must also determine CE prices if the goal

is to determine an efficient allocation, and UCE prices if the VCG outcome is

important (see Section 2). Thus, one reasonable approach is explicitly price based,

with elicitation structured as a search for CE prices. One can also consider an

allocation-based approach, with elicitation structured as a search for the efficient

allocation.
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Price based. Query bidders until the value information is sufficient to verify a set

of UCE prices and a supporting allocation for the main economy. For in-

stance, one can simulate learning algorithms to elicit bidder valuations until

they are known with enough accuracy to determine UCE prices (Lahaie and

Parkes 2004a, Lahaie and Parkes 2004b).

Allocation-based. Query bidders until the value information provides a certificate

for the efficient allocation and the Vickrey payments. Use partial information

to augment a search in allocation space, executing new queries to refine in-

formation that will resolve current uncertainty about the efficient allocation

(Conen and Sandholm 2001, Hudson and Sandholm 2004).

As yet there are no published studies to compare the elicitation effectiveness

and computational scalability of price-based approaches and allocation-based ap-

proaches. Price-based approaches may be fundamentally more scalable, with queries

determined by solving optimization problems that are restricted by current bidder

responses, for instance via winner-determination problems defined on bundles re-

turned by best-response queries. In comparison, allocation-based approaches must

strive to avoid maintaining an allocation graph that scales exponentially with the

number of items.
� �

Price-based approaches are also naturally decentralized: in a proxied archi-

tecture, each proxy agent can elicit preference information independently until it

has enough information to determine its best-response to current prices. This best-

response information can verify that an allocation is efficient even though each

proxy knows nothing about the values of other bidders.

Recently, methods from computational learning theory (CLT) have been adapted

to direct elicitation. CLT provides membership queries (“what is your value on bun-

dle � ?”) and equivalence queries (“is your valuation function ¸� ? If not, identify

a bundle � for which ¸�ñ���;� is incorrect.”) In one approach, each proxy is respon-

sible for learning the exact value function of a single bidder in isolation (Zinke-
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vich, Blum, and Sandholm 2003, Blum, Jackson, Sandholm, and Zinkevich 2004).

In another approach, Lahaie and Parkes (2004a) integrate CLT into price-based

approaches and use demand queries to simulate equivalence queries. A demand

query presents prices
9

and a bundle � and asks whether � is in the demand set

of the bidder at the prices. This coordinates elicitation across proxy agents and

provides an elicitation method that can terminate early as soon as CE prices are

discovered and without learning values exactly.

6 Summary

Iterative CAs are of critical importance in addressing the problem of preference

elicitation, which many view as the biggest issue to surmount in the real-world

deployment of CAs. The sophisticated combinatorial optimization and pricing al-

gorithms of CAs are impotent without rich bid information from bidders.

Iterative CAs focus elicitation, often through price discovery, and can find ef-

ficient allocations without bidders reporting, or even computing, their exact value

information. We emphasized price-based approaches, and in particular a primal-

dual design paradigm. Canonical non-price based approaches, including proxied-

and direct-elicitation approaches, were also discussed.

For a related discussion of the primal-dual approach to auction design see

Chapter 8, and see also Chapters 3, 5 and 6 for discussions of specific iterative

CAs. Chapters 9, 10 and 11 relate to the discussion of bidding languages, elicita-

tion, and communication complexity. Chapter 17 discusses methods to accelerate

the computation of the outcome of a proxied ascending price CA.

Looking ahead, we see a number of outstanding problems in the design of

iterative CAs:

( Introduce the cost of preference elicitation more explicitly into the auction

design problem. Current methods are mainly first best, and seek to find an efficient

allocation with as little information as possible. But what happens when this min-

imal information remains too costly for bidders to provide? This is the problem
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of designing second-best auctions, that make the right tradeoff between the cost

of information and the value of additional information in terms of improving the

market allocation. Some initial progress has been made in the analysis of auction

design with costly information (Compte and Jehiel 2000, Larson and Sandholm

2001, Fong 2003, Parkes 2004), and with bounded communication (Blumrosen

and Nisan 2002, Blumrosen, Nisan, and Segal 2003), but much more work needs

to be done.

( Design iterative CAs for which straightforward bidding is an ex post equi-

librium, but which do not suffer from the well-known vulnerabilities of the VCG

auction that are outlined by Ausubel and Milgrom (Chapter 1). These auctions

will necessarily not be allocatively efficient, but may be more desirable due to new

robustness against manipulation by coalitions and improved revenue properties.

( Current auctions for general valuations for which theoretical results are avail-

able use XOR bidding languages which are not concise enough to be usable for

many real-world applications. We need iterative CAs that support richer bid-

ding languages, for instance allowing side constraints, volume discounts, and other

high-level bidding logic to be stated and then refined during the auction.
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Notes�
One argument commonly made for why very few VCG mechanisms are seen

in practice is that bidders are reluctant to reveal their complete and true valua-
tions in a situation of long-term strategic interaction (Rothkopf, Teisberg, and Kahn
1990).�

The observed vulnerabilities of the VCG auction can be viewed as problems
intrinsic to the task of implementing efficient allocations in an ex post equilibrium
in iterative CAs, given the uniqueness of the VCG auction among efficient auctions
(see Chapter 1).

� Goods are substitutes is the largest set containing unit-demand valuations (with� � ����� � >@?BA [ P C � � � [ � for all � , where � � [ is the value for item
^

in isolation) for
which the existence of linear CE prices can be established (Gul and Stacchetti
1999).

� Gul & Stacchetti (1999) show that there is often no linear price equilibrium
that supports the VCG payments with substitutes valuations. On the other hand,
linear prices can support the VCG outcome for unit-demand valuations (Leonard
1983).

  Computational analysis on a broad test suite of problem instances demon-
strated failure of buyers are substitutes in around 43% of instances (Parkes 2001,
Chapter 7, pp.216).

¤ In fact, the prices will support all efficient allocations in each marginal econ-
omy because prices that support any one efficient allocation support all.

­ Parkes (2002) uses agent-independence to refer to privacy-preservation. Parkes
also requires an additional technical requirement (outcome-independence), that is
without loss of generality for “best-response bidding languages,” which are ex-
pressive enough to simulate at least the following bids: bundle � � is worth at least
$100; and bundle � � is worth at least $50 more than bundle � � ; and bundle � � has
value $200.

È The form of activity rule used in the FCC spectrum auctions is due to Paul
Milgrom and Robert Wilson. The rule requires quantities bid in the auction are
(weak) monotonically decreasing. Similar rules have since become standard in
ascending CAs.

É Roth and Ockenfels (2001) have studied the use of deadlines versus rolled
closures, on eBay and Amazon Internet auctions respectively. Bidders on Amazon
bid earlier than on eBay, and many bidders on eBay wait until the last seconds of
an auction to bid.
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�_Í
Click-box bidding was adopted by the FCC in the light of evidence that bidders

used the trailing digits for signaling in early wireless spectrum auctions.���
Of course, arbitrary decommiting may be undesirable because it allows insin-

cere bidding and cheap talk.�_�
BAS holds and there is a set of minimal CE prices that will support the VCG

outcome. However, Gul and Stacchetti’s (2000) auction maintains item prices and a
stronger condition, such as unit-demand valuations, is required for VCG payments
to be supported with linear CE prices.� � A set of items, � t * � , are overdemanded when it is not possible to satisfy the
demand sets of bidders that demand only items in � t .� � A set �&* % of bidders are undersupplied if not all bidders can be satisfied in
the provisional allocation.�   One can also imagine that each round of the auction closes the duality gap
between the feasible primal and dual solutions. At termination the duality gap is
zero, complementary slackness holds, and we have an efficient allocation and CE
prices.� ¤ Recently, de Vries, Schummer and Vohra (2003) observe a formal distinc-
tion between the subgradient approach adopted in iBundle and the primal-dual
approach adopted in dVSV and MP. One can view subgradient methods as a spe-
cialization of primal-dual, and thus we prefer to continue to adopt the primal-dual
terminology throughout this section.� ­ Specifically, the bidder need only bid for bundles � for which there are no
bundles �)tñ� � with � � ����tG� � � � ����� , i.e. taking advantage of sparse valuations.� È A simple way to achieve consistency is to use a proxy agent interface. The
proxy can follow a straightforward bidding strategy based on value information
reported by a bidder. A bidder can provide additional information as needed but
must be consistent during the course of the auction.� É In particular, de Vries, Schummer, and Vohra (2003) note that iBundle is more
correctly a subgradient algorithm while dVSV is a primal-dual algorithm. Primal-
dual algorithms are inherently faster than subgradient algorithms in the optimiza-
tion literature (Fisher 1981).��Í

This property is satisfied by the “spatial fitting” environment used by Kwas-
nica, Ledyard, Porter and DeMartini (2004) in experiments and introduced in Banks,
Ledyard and Porter (1989).
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Graves et al. (1993) have also described LP-based methods to provide price

feedback in a multi-stage combinatorial auction procedure adopted at the Univer-
sity of Chicago Graduate Business School in the 1990’s.���

For instance, Kalagnanam, Bichler, Davenport and Hohner (Chapter 23) and
Caplice and Sheffi (Chapter 21) discuss the role of item prices coupled with vol-
ume discounts and complex bid-taker constraints in industrial procurement and
logistics.� � Indeed, the speed of iterative combinatorial auctions has often been cited in
FCC discussions as one potential drawback in comparison with linear price auc-
tions.� � Current allocation-based algorithms cannot scale beyond a handful of bid-
ders and tens of items (Hudson and Sandholm 2004). In comparison, ascending-
price auctions readily scale to problems that push the limit of current winner-
determination technology (Parkes and Ungar 2000a). We are not aware of any
computational studies of price-based direct elicitation methods such as those of
Lahaie and Parkes (2004a).

7 Appendix: LP Theory

Consider the linear program:

>@?BA�) � é [P]

W � Þ � ¬ é ¹+*

é �� 
where ¬ is a

� ,0(
integer matrix, é #.- z is a

(
-vector, and ) and * are

( < and�
-vectors of integers. Vectors are column-vectors, and notation ) � indicates the

transpose of vector ) , similarly for matrices. The primal problem [P] is to compute

a feasible solution for é that maximizes the value of the objective function.

The dual program is constructed as:

>@íïî * � ð [D]

W � Þ � ¬ � ð²� )
ð²�� 
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where ðò#/-10 is a
�

-vector. The dual problem is to compute a feasible

solution for ð that minimizes the value of the objective function.

Let 24365�� é � � ) � é , the value of feasible primal solution é , and 2�7#385)�Qð\� �
* � ð , the value of feasible dual solution ð .

Complementary-slackness conditions express logical relationships between the

values of primal and dual solutions that are necessary and sufficient for optimality.

Definition 6 (Complementary-Slackness). Complementary-slackness conditions

constrain pairs of primal and dual solutions. Primal CS conditions state é
� �:¬ � ð

< ) � �  , or in logical form:

é [ û� ýüÂ¬ [ ð � ) [ (P-CS)

where ¬ [ denotes the
^
th column of ¬ (written as a row vector to avoid the use

of transpose). Dual CS conditions state ð � �:¬ é < * � �  , or in logical form:

ð [ û� /üÂ¬s� é � * � (D-CS)

where ¬ � denotes the " th row of ¬ .

Theorem 10 (strong-duality). A pair of feasible primal, é , and dual solutions, ð ,

are primal and dual optimal if and only if they satisfy the complementary-slackness

conditions.

Proof. Primal CS holds iff é
� �:¬ � ð²< ) � �  , and Dual CS holds iff ð � �:¬ é <* � �  . Equating, and observing that é

� ¬ � ð � ð � ¬ é , we have P-CS and D-

CS iff é
� ) � ð � * , or ) � é � * � ð . The LHS is the value of the primal, 2 365 � é � ,

and the RHS is the value of the dual, 2 7#385 �Qð\� . By the strong duality theorem,

29365a� é � � 2 7#385)�Qð\� is a necessary and sufficient condition for the solutions to be

optimal. ��
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