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ABSTRACT
Mechanisms for coordinating group decision-making among
self-interested agents often employ a trusted center, capable
of enforcing the prescribed outcome. Typically such mech-
anisms, including the ubiquitous Vickrey Clarke Groves
(VCG), require significant transfer payments from agents
to the center. While this is sought after in some settings, it
is often an unwanted cost of implementation. We propose
a modification of the VCG framework that—by using do-
main information regarding agent valuation spaces—is often
able to achieve redistribution of much of the required trans-
fer payments back among the agents, thus coming closer to
budget-balance. The proposed mechanism is strategyproof,
ex post individual rational, no-deficit, and leads to an ef-
ficient outcome; we prove that among all mechanisms with
these qualities and an anonymity property it is optimally bal-
anced, in that no mechanism ever yields greater payoff to the
agents. We provide a general characterization of when strat-
egyproof redistribution is possible, and demonstrate specif-
ically that substantial redistribution can be achieved in al-
location problems.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial
Intelligence—Multiagent systems; J.4 [Social and Behav-
ioral Sciences]: Economics

General Terms
Algorithms, Economics, Theory
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1. INTRODUCTION
This paper is concerned with decision-making problems

that involve a group of self-interested parties, when each
party may be in competition with other members of the
group. Instances of this problem abound in everyday life.
Consider, to name just a few examples: a group of house-
mates that jointly own a car and must decide who should
get to use it on a Friday night; a set of city neighborhoods
competing for a grant to build a new playground; a group
of astronomers competing for the rights to use a publicly-
owned space telescope; or companies competing for govern-
ment allocation of wireless spectrum.

How would one formulate a general framework for
decision-making in domains such as these? One natural ob-
jective is that the decision process lead to the choice that
maximizes the total value that is realized. Moreover, and to
that end, it is highly desirable that the mechanism not en-
courage manipulation by dishonest agents—we want truth-
fulness to be in each agent’s best-interest; this will allow us
to reasonably predict the actual effects of whatever outcome
is selected, and will simplify the task of the agents by tak-
ing strategic behavior out of the equation that maximizes
expected reward.

The well-known Groves family of social choice mecha-
nisms, by requiring specific payments to each agent, reaches
outcomes with the desirable properties described above.
However, implementing the payments specified in the most
basic Groves mechanism requires a large external budget,
making it infeasible in typical decision-making scenarios
where there is no outside funding.

The Vickrey Clarke Groves (VCG) mechanism counter-
acts this potential budget imbalance by imposing “charges”
on the agents, to be delivered to a “center” capable of en-
forcing the specified outcome. For typical decision-making
problems,1 VCG results in net transfers being delivered only
in the direction of agents to the center. While there are
some scenarios in which revenue to a center is sought af-
ter (e.g., some auctions), often it is preferable to maintain
as much wealth as possible within the group of agents, and
the transfer payment can be viewed as an undesirable “cost
of implementation.” In other words, budget-balance is fre-
quently a sought after mechanism property, and though it
doesn’t run a deficit, the VCG mechanism fails in this re-
gard by producing a surplus of agent charges (hence called
the “VCG surplus”).

1Specifically, when there are no positive externalities.



The ideal social choice mechanism would have the desir-
able properties of VCG (truthfulness; social welfare maxi-
mization; non-negative payoff guarantee), and at the same
time run neither a budget surplus nor deficit. As we will see,
this exact budget-balance is usually not attainable. How-
ever, while it has often been stated that no improvement
over VCG is possible, we demonstrate that this is not the
case in a broad class of domains (e.g., allocation problems)
where valuations have some basic structure.

We propose a modification of the VCG framework that
incorporates redistribution of as much of the VCG sur-
plus as possible back among the agents. We prove that—
among all truthful, social welfare maximizing, and no-deficit
mechanisms that meet basic anonymity and participation
constraints—this “redistribution mechanism” is optimally
balanced, in that no mechanism ever comes closer to budget-
balance. We describe why in the case of completely un-
constrained valuation functions no redistribution is possible,
and characterize the domains in which it is.

We start by focusing our analysis on the special setting of
“all-or-nothing” (AON) domains, those in which each out-
come yields non-zero reward for just a single agent (every
agent gets either all the reward or none). Here the redis-
tribution mechanism has a particularly simple and elegant
form, and the most redistribution is possible. In fact, in
AON domains the mechanism is completely budget-balanced
(i.e., redistributes all surplus) in the limit as the number of
agents goes to infinity, for arbitrary valuations in an AON
context. We demonstrate the applicability of the mecha-
nism to general allocation problems, and describe empirical
results that indicate the extent to which redistribution is
possible for different degrees of dependency between agent
valuations. Finally, we discuss implementation of the mech-
anism in the absence of a central enforcer.

2. BACKGROUND AND RELATED WORK

2.1 Notation

• Let I be the set of agents participating in a mechanism.
• Let n = |I |, the number of agents.
• Let O be the set of possible outcomes.
• Let vi(o) denote the true value to i of outcome o ∈ O.
• Let v̂i(o) denote the reported value to agent i of out-

come o.
• Let o∗ denote the socially optimal outcome, according

to reported valuations, i.e.:

o∗ = arg max
o∈O

X

i∈I

v̂i(o)

• Let o∗−i denote the outcome that maximizes payoff
among agents other than i, according to reports, i.e.:

o∗−i = arg max
o∈O

X

j∈I\{i}

v̂j(o)

2.2 Mechanism design background
The field of mechanism design is concerned with reach-

ing outcomes that meet certain system-level criteria, despite
the assumption that individuals will pursue only their self-
interest. A mechanism amounts to a specification of a deci-
sion rule, potentially accompanied by a set of requirements
(typically monetary transfers) placed on participants. A

mechanism that maximizes social welfare is termed socially
optimal or efficient. When no agent can ever benefit from ly-
ing, i.e., when being truthful is a dominant strategy, a mech-
anism is called strategyproof. A somewhat weaker property
is incentive-compatibility (IC); in an IC mechanism truthful-
ness is a Nash equilibrium: no agent can benefit from being
dishonest when all other agents are truthful.

The Groves class of mechanisms is efficient and strate-
gyproof [Groves, 1973]. A Groves mechanism chooses the
outcome that maximizes reported reward across all agents,
and makes a transfer payment to each agent equal to the
reward received by all other agents. In the most basic ver-
sion, each agent’s payoff is equal to the reward received by
the entire system; clearly such a mechanism would require
a massive budget to implement. Fortunately, the Groves
framework allows for the imposition of a charge on each
agent, which does nothing to diminish the mechanism’s de-
sirable incentive properties so long as each agent’s charge is
completely beyond their control. Formally, a Groves mech-
anism chooses the outcome o∗ that maximizes social wel-
fare according to reported rewards, and defines the following
transfer payment Ti to each agent i:

Ti =
X

j∈I\{i}

v̂j(o
∗) − C−i

where C−i can be any quantity independent of agent i.
In order to ensure that all agents want to participate in a

mechanism, it is desirable that none ever be worse for having
done so. A mechanism that provides this guarantee to every
agent, for any possible set of agent valuation functions, is
referred to as ex post individual rational (IR). A mechanism
that yields non-negative payoff in expectation is termed ex
ante IR. To obtain ex post IR in the Groves framework, we
should ensure that for each i:

vi(o
∗) +

X

j∈I\{i}

v̂j(o
∗) ≥ C−i

An important special case of the Groves class is the VCG
mechanism [Vickrey, 1961; Clarke, 1971; Groves, 1973].
VCG defines C−i above to be

P

j∈I\{i} v̂j(o
∗
−i), the reported

reward that all other agents would have received if i were
not a participant.2 Thus VCG yields the following payoff,
πi, for each agent i:

πi = vi(o
∗) + Ti

= vi(o
∗) +

X

j∈I\{i}

v̂j(o
∗) −

X

j∈I\{i}

v̂j(o
∗
−i)

VCG is ex post IR, and is also no-deficit: the sum of
payments made from agents to the center is never less than
0. But it is often greater—each agent’s net payment to the
center is always between 0 and the reward it reported for
the selected outcome, depending on the reported valuations
of the other agents. In the case of AON domains, VCG is
known simply as the Vickrey or second-price auction, and
there is only one payment made—the winning agent must
pay the second highest “price”.

Consider the following 4-agent AON example, where out-
come oi corresponds to the decision that yields value for
agent i:

2Note that since all Groves mechanisms are strategyproof,
v̂j will equal vj in dominant strategy equilibrium.



v1 v2 v3 v4

o1 10 0 0 0
o2 0 8 0 0
o3 0 0 5 0
o4 0 0 0 4

Table 1: 4-agent AON decision problem.

VCG chooses outcome o1, as agent 1’s value (10) is highest,
and the following payoffs result:

πi = vi(o
∗) +

X

j∈I\{i}

v̂j(o
∗) −

X

j∈I\{i}

v̂j(o
∗
−i)

π1 = 10 + 0 − 8 = 2

π2 = 0 + 10 − 10 = 0

π3 = 0 + 10 − 10 = 0

π4 = 0 + 10 − 10 = 0

total payment to center = 8

In the case of an auction, this rather large payment of 8
may be desirable—it can go to the seller that is providing
the item. But for a general social choice or decision prob-
lem, it may merely be an unwanted side-effect of choosing
to implement VCG, the most famous strategyproof and effi-
cient mechanism. In this work we explore the possibility of
returning the surplus to the agents.

Definition 1. (Redistribution mechanism) An ef-
ficient social choice procedure that seeks to minimize net
transfers from agents to an external body by return of VCG
surplus to the agents.

Our characterization of efforts to achieve minimal surplus
in terms of redistribution is motivated by the centrality (and
ubiquity) of VCG. In seeking to redistribute as much of the
VCG surplus as possible (without violating truthfulness),
we are effectively searching among all IR and no-deficit in-
stances of the Groves class of mechanisms for the one that
maximizes payoff to the agents. Green & Laffont [1977]
showed that for general valuations, the only efficient and
strategyproof mechanisms are the members of the Groves
class. Holmstrom [1979] strengthened this result signifi-
cantly, proving that Groves is also unique in any restricted
domain in which each agent’s space of potential valuations
is smoothly connected, i.e., when for any two valuations an
agent could report, one can be differentiably deformed into
the other. As Holmstrom notes, this result shows that “for
all practical purposes” one must be content with Groves.
Thus, our approach is comprehensive and will yield unique-
ness properties for the mechanism we propose.

2.3 Related work
Work in the area of designing budget-balanced mecha-

nisms is relatively scarce, presumably due to the primacy of
the goal of social efficiency in combination with the strong
negative result of the Myerson-Satterthwaite impossibility
theorem: that no mechanism is capable of achieving individ-
ual rationality, efficiency, and budget balance at the same
time for general valuation functions, even if we loosen our
solution concept to Bayes-Nash equilibrium [Myerson and
Satterthwaite, 1983]. This is an extension of the Hurwicz
impossibility theorem [Hurwicz, 1975], which proves the re-
sult for dominant-strategy equilibria.

One proposal for achieving budget-balance is the
d’AGVA mechanism [d’Aspremont and Gerard-Varet, 2002].
d’AGVA selects the efficient outcome according to reported
types, but determines transfer payments based on a model of
agent valuations that the center maintains. This mechanism
is interesting primarily because it leads to exact budget-
balance; however, it is implementable only in Bayes-Nash
(rather than dominant-strategy) equilibrium, and if the cen-
ter’s model is produced via iterative execution, serious prob-
lems regarding incentive compatibility can arise. Moreover,
d’AGVA is only ex ante IR—instances in which an agent is
worse off for participating are possible.

Parkes et al. [2001] describe a payment rule that approxi-
mates VCG and achieves perfect budget-balance in exchange
settings where VCG runs a deficit, though truthfulness (and
thus efficiency) is sacrificed. Faltings [2004] formulates the
problem more closely to the way we do in this work, though
his approach also attains exact budget-balance at the ex-
pense of efficiency. His mechanism chooses the outcome that
is socially efficient among a subset of agents, and distributes
the VCG surplus among agents that are not part of that sub-
set. In a similar vein, Feigenbaum et al. [2001] analyze the
Shapley-value mechanism for sharing multicast transmission
costs, which comes closest to the efficient outcome among
all budget-balanced mechanisms for that domain, though
their results suggest its implementation is computationally
intractable. Most similar to our proposal is that of Bailey
[1997]. He specifies an efficient mechanism that refunds sur-
plus to participants, but he forfeits the no-deficit guarantee
in order to achieve a mechanism that is budget-balanced in
expectation.

Our approach is significantly different than those de-
scribed above—we characterize the extent to which budget-
balance can be approximated (and sometimes reached)
in dominant strategies, without sacrificing individual-
rationality, efficiency, or no-deficit guarantees. Rather than
giving up one or another of these properties, we are able to
achieve budget-balance superiority over VCG by using do-
main information that constrains the space of possible valu-
ations.

3. REDISTRIBUTION IN AON DOMAINS
It is instructive to start with the special case of AON

domains, for which our solution is especially simple and ele-
gant, as it provides good intuition for the general case. For-
mally, we define an AON domain as one in which the number
of outcomes is equal to the number of agents, and each agent
i’s valuation function vi is known to be constrained in the
following way: vi(oj) = 0,∀j 6= i. We identify oi with the
unique outcome that may yield positive value to agent i, and
use the following short-hand notation:

• Let ac denote the agent with the cth highest reported
value. (So in a welfare-maximizing mechanism a1 is
the “winning” agent—the one that receives positive
value from the selected outcome.)

• Let Vac
denote the true value to ac of the outcome he

favors (i.e., vac
(oac

)), and V̂ac
the reported value (i.e.,

v̂ac
(oac

)).

We propose the following redistribution mechanism for AON
domains that maintains much of the VCG surplus among the
agents:



Definition 2. (Redistribution mechanism RM)

1. Each agent i communicates to the center Vi, the value
he places on the outcome under which he obtains non-
zero reward.

2. The center implements the outcome that maximizes
social welfare.

3. The winner (a1) pays each agent (including himself) a
VCG surplus redistribution of Zi, and pays the centerV̂a2 −

P

i∈I
Zi, where

Zi =

( V̂a3
n

for i = a1, a2V̂a2
n

for i = a3, ..., an

Theorem 1. RM is ex post individual-rational in AON
domains.

Proof. The payoff to each agent for the implemented
outcome in RM is:

πa1 = Va1 − V̂a2 + Za1

πj 6=a1 = Zj

The payoff to any “non-winner” j is always the non-
negative Zj payment term. When the mechanism is fol-

lowed, Va1 = V̂a1 ; then since V̂a1 ≥ V̂a2 by definition, and
since Zai

≥ 0, a1’s payoff is also always non-negative.

Theorem 2. RM is strategyproof in AON domains.

Proof. RM differs from the VCG mechanism only in
the Z payment term—each agent receives the standard VCG
payoff plus a non-negative Z payment. Since we know VCG
is strategyproof, it suffices to show that no agent i can
increase its Zi payment term by misreporting its reward.
ak below denotes the agent with the kth highest bid under
truthful reporting.

Agent a1 receives redistribution payment (from him-

self) V̂a3/n. Over-reporting V̂a1 changes nothing. Under-
reporting could put a1 in the second or third position (be-
yond the third it’s obvious that nothing could change). In

the second position, he would still receive V̂a3/n. In the

third he would receive V̂a3/n as well, since the second posi-
tion would then be held by the actual a3.

Agent a2 receives redistribution payment V̂a3/n. Over-
reporting could move him to the first position, in which case
his payment would be the same. Under-reporting could put
him in the third position or beyond, but then the second
position would be held by the actual a3, so a2’s payoff would
be the same.

Agent a3 receives redistribution payment V̂a2/n. Under-
reporting changes nothing. Over-reporting could put him
in the first or second position. In both cases he receives
the same Z payment, since the third position would then be
held by the actual a2. The same holds for all aj>3.

Theorems 1 and 2 together show that RM for AON do-
mains always achieves the efficient outcome in dominant
strategy equilibrium.

Theorem 3. As the number of participating agents n
goes to ∞, the amount of extracted wealth that cannot be
redistributed among the agents under RM goes to 0. That
is, RM is asymptotically budget-balanced for AON domains.

Proof. The amount of wealth redistributed among the
agents is:

X

i∈I

Zi =
n − 2

n
· V̂a2 +

2

n
· V̂a3

The amount not redistributed is the payment to the center:

Zc = V̂a2 −
X

i∈I

Zi

= V̂a2 −
n − 2

n
· V̂a2 −

2

n
· V̂a3

=
2

n
· (V̂a2 − V̂a3)

We assume existence of some finite bound on valuations, and
thus on V̂a2 .

As n increases, we may expect Zc to be pushed down
by a convergence of Va2 and Va3 , but regardless of this
RM achieves perfect budget balance in the limit. VCG will
always lose V̂a2 , no matter the number of agents.

Consider once more the example illustrated in Table 1.
The following payoffs are obtained under RM:

π1 = 10 − 8 +
5

4
=

13

4

π2 =
5

4
, π3 =

8

4
, π4 =

8

4

Zc = 8 −
“5

4
+

5

4
+

8

4
+

8

4

”

=
3

2

Even in this example with just 4 agents, the vast majority
(81%) of the VCG surplus has been redistributed. If Va3

were 8 rather than 5, 100% would be redistributed.

3.1 Optimality of RM

We will now characterize the relationship between
RM and all other possible redistribution mechanisms
through a series of incremental observations. We seek the
optimal way of redistributing the VCG payment back among
agents in AON domains. More specifically, we wish to
achieve the following:

Definition 3. (Optimally balanced mechanism) A
mechanism is optimally balanced for domain D if—among
all efficient, no-deficit, and ex post IR mechanisms that can
be implemented in dominant strategy equilibrium—it main-
tains the most wealth within the set of agents, for every in-
stance d ∈ D.

A domain D specifies a space of possible valuations for
every agent, and an instance d ∈ D may be any realization
of actual valuations consistent with D.

Lemma 1. In any strategyproof redistribution mechanism
for smoothly connected valuation spaces, for every agent i,
the amount of surplus redistributed to i, Zi, must be inde-
pendent of the valuation function i reports.

Proof. The Lemma follows from uniqueness of the
Groves class. For intuition, consider an agent i with ar-
bitrary valuation vi = {vi(o1), ..., vi(on)} yielding payment
Zi. If there is some outcome ok and ǫ ∈ ℜ such that re-
porting v̂i(ok) = vi(ok) + ǫ yields Zi + γ for some γ > 0
without changing the selected outcome, agent i will misre-
port to maximize payment.



To achieve efficiency in dominant strategy equilibrium, a
redistribution mechanism must be an instantiation of the
Groves class, so the redistribution can be considered part of
the necessarily agent-independent Groves “charge” function.

Given Lemma 1, it will be useful now to consider each
agent’s redistribution payment as a function of the reported
rewards of all other agents in the system. So we have, ∀i∈I :

Zi = fi(V̂0, V̂1, ..., V̂i−1, V̂i+1, ..., V̂n)

for some fi. The task of constructing a redistribution mech-
anism can then be viewed as the specification of n functions,
each of which is defined over a distinct set of n − 1 of the
valuation reports. It’s important to note that the above
characterization is comprehensive, as each fi is defined over
all variables in the system save i’s report, which it can’t
depend on by Lemma 1.

But it is often preferred (or even required) that we do not
discriminate amongst agents based on personal identity; we
often want to implement mechanisms that are anonymous:

Definition 4. (Anonymous mechanism) A mecha-
nism that chooses an outcome and defines transfer payments
(including redistribution) according to a single deterministic
function that is invariant to domain information that does
not apply identically to every agent.

In other words, anonymity requires that transfer pay-
ments be computed independent of “personal identity”. To
construct an anonymous redistribution mechanism, then, in
fact we define only a single function f that is used univer-
sally, but applied to a distinct set of n − 1 parameters for
each agent. We know that an optimally balanced anonymous
redistribution mechanism exists, since to define it amounts
to specifying the value of f , for every possible set of n − 1
values, that is greatest while still ensuring that no deficit
could result for any possible instantiation of the excluded
nth value.

Let p
(k)
i denote the kth largest parameter to the function

that defines Zi. p
(2)
i is then the second highest bid among

all agents other than i, and is also the greatest lower-bound
(guarantee) on the VCG surplus that will exist, independent
of the valuation i reports.

Lemma 2. The optimally balanced anonymous redistribu-
tion mechanism for AON domains must define redistribution

payments Zi, ∀i∈I, that are monotonically increasing in p
(2)
i .

Proof. Suppose the Lemma didn’t hold. Then there
would be reported reward profiles A and B ∈ ℜn withV̂a2(A) ≤ V̂a2(B), yet with Z(A) > Z(B). In such a case
the mechanism could not be optimal, as implementing Z(A)
in case B would keep more wealth among the agents.

Theorem 4. RM is the optimally balanced anonymous
mechanism for AON domains.

Proof. Any anonymous, efficient, no-deficit, and ex post

IR redistribution mechanism defines payments Zi ≤
p
(2)
i

n
,

∀i∈I . Consider the parameters of fi that would lead to Zi

being >
p
(2)
i

n
. Simply note that there exists a problem in-

stance such that all p
(2)
j , ∀j∈I are identical. This, when

viewed in light of Lemma 2, shows that if Zi were >
p
(2)
i

n
,

the mechanism would not be guaranteed IR and no-deficit,
as

P

j Zj could then be > V̂a2 .
Now observe that another way of describing RM is as

follows: redistribute a portion of V̂a2 to each agent i equal
to 1

n
times the value of the second highest reported reward

of agents other than i.

4. REDISTRIBUTION IN THE GENERAL
CASE

We have thus far only considered redistribution of VCG
payments in AON domains. In this section we explore the
general conditions under which strategyproof redistribution
is possible, and characterize how to redistribute surplus op-
timally.

We first show that in the case of domains in which value
functions are completely unrestricted, redistributing any of
the transfer payments while maintaining the desirable prop-
erties of VCG is impossible. One way of understanding this
is to consider the problem of finding a lower-bound on the
total amount of VCG surplus that is guaranteed to exist,
independent of any given agent’s reported valuation.

Lemma 3. In any efficient, strategyproof, ex post IR and
no-deficit mechanism, an upper-bound on the redistribution
payment to any agent i is the minimum VCG surplus that
could be realized, taken over all possible instantiations of v̂i.

Proof. Among all efficient, strategyproof, and ex post
IR mechanisms, VCG yields the greatest surplus [Krishna
and Perry, 1998]. Thus a mechanism with these properties
that redistributes a quantity greater than the VCG surplus
will run a deficit, since charging any agent more would vio-
late ex post IR.

Let v̂i be the instantiation of v̂i that results in minimum
VCG surplus, Si. Suppose for contradiction that i receives
redistribution payment Zi > Si. By Lemma 1, Zi must be
the same regardless of the valuation i reports; thus when i
reports v̂i he will have been redistributed a quantity greater
than the total VCG surplus, and the system will have run a
deficit.

Lemma 3 points to a way of generally characterizing when
redistribution is and is not possible. Whether or not a VCG
surplus will result is intimately connected to the similarity
of agents’ valuations. In the extreme, all agents may favor
the same outcome, in which case there will be no surplus.
In some domains, e.g., AON, we know a priori that agents’
valuations are distinct; such distinctions are in fact what
enables redistribution. We now formalize these intuitions.

Definition 5. (Potential for Universal Relevance
Nullification [PURN]) An agent i has the potential for
universal relevance nullification, given the valuation reports
of the other agents, if i could report a valuation v̂i that would
yield o∗ = o∗−j , ∀j∈I (including i).

The PURN property indicates that an agent could poten-
tially report a value that renders null the influence on the
outcome of any single agent’s report alone, even his own.
PURN is often dependent on the values other agents have
reported, and is then a property of one agent’s valuation
domain combined with the other agents’ actual reports.

Theorem 5. No efficient, strategyproof, ex-post IR, and
no-deficit mechanism redistributes any surplus to an agent
in an instance in which PURN holds for that agent.



Proof. The total VCG surplus is:
X

j∈I

“

X

k∈I\{j}

v̂k(o∗−j) −
X

k∈I\{j}

v̂k(o∗)
”

Here we sum over all agents j ∈ I the VCG surplus j
creates: the difference between j’s VCG “charge” delivered
to the center and the Groves payment he receives. By defi-
nition, any agent i with PURN may report a v̂i that would
lead to this quantity being zero. The theorem follows di-
rectly from this and Lemma 3.

Lemma 4. Any agent with an unconstrained valuation al-
ways has PURN, regardless of the other agents’ valuations.

Proof. Let i be an agent with an unconstrained val-
uation. Consider the outcome o∗−i that maximizes utility
among the n − 1 other agents. Let i’s valuation be as fol-
lows: v̂i(o

∗
−i) = maxj∈I\{i} v̂j(o

∗
−i), and v̂i(o) = 0, ∀o 6=o∗

−i
.

Considering this full set of n valuations, the overall efficient
outcome o∗ will be identical to o∗−j , ∀j∈I ; this is precisely
the condition for PURN.

Proposition 1. The VCG mechanism with no redistri-
bution is optimally balanced for unconstrained valuations.

Proof. When valuations are unconstrained, by Lemma
4 each agent has PURN. By Theorem 5, then, no agent can
receive any redistribution payment.

While this is a strong negative result, its applicability is
hardly universal; in practice no valuation function is entirely
unconstrained. Specifically, in determining the payment Zi

for any agent i, vi need not be treated as a complete un-
known. The AON case, for instance, is not caught by Propo-
sition 1 because we need only consider valuations that are
non-zero for just a single outcome.

In any given domain there may be several ways in which
valuations are known to be restricted. Even the mere ex-
istence (and knowledge) of distinct finite bounds on each
agent’s valuation for any outcome can be enough to en-
able redistribution. PURN can be seen as one extreme in
a spectrum of possible relationships between agent valua-
tion spaces—rather than having the capacity to completely
nullify the relevance of other agents in determining the out-
come, an agent may have the potential to diminish others’
impact only partially, or perhaps not at all. This capacity
is of interest to us here because of the bearing it has on
the amount of VCG surplus that will result. Our ability to
redistribute VCG surplus to an agent is directly tied to the
extent to which we can know surplus will exist independent
of that agent’s reported valuation.

Definition 6. (Surplus-guarantee Si) The lower-
bound on VCG surplus computed over all possible instan-
tiations of v̂i, i.e., the greatest surplus guarantee that is in-
dependent of agent i.

Si = min
v̂i

h

X

j∈I

“

max
o′∈O

n

X

k∈I\{j}

v̂k(o′)
o

−

X

k∈I\{j}

v̂k(o†)
”i

(1)

= min
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X

j∈I

“

max
o′∈O

X

k∈I\{j}

v̂k(o′)
”

− (n − 1)
“

X

j∈I

v̂j(o
†)

”i

subject to the constraint that the o† and v̂i in the above
minimization must satisfy the following:

o† = arg max
o∈O

X

j∈I

v̂j(o) (2)

Breaking down equation (1), within brackets is an ex-
pression representing the net payment—summed over all
agents—to the center under VCG; this is the surplus we’ll
have to redistribute. For each agent i, we take the minimum
of this expression over all possible valuations i could report.

Now note that a payment based on Si will not always be
completely anonymous, since we’re using information about
valuation constraints that are potentially unique to each
agent. Specifically, it will not be anonymous in domains
that are not symmetric.3 But interestingly, it turns out
that a generalization of mechanism RM is optimal not only
across the space of completely anonymous mechanisms, but
also among mechanisms that meet just the following weaker
requirement:

Definition 7. (Surplus-anonymous redistribution
mechanism) A mechanism that chooses an outcome and
maps agent-specific VCG surplus lower-bounds (Si) to redis-
tribution payments (Zi) according to a single deterministic
function that is invariant to domain information that does
not apply identically to every agent.

In a surplus-anonymous redistribution mechanism, then, for
any two agents i and j: if Si = Sj , then Zi = Zj .

Theorem 6. For all domains with smoothly connected
valuation spaces, the redistribution mechanism RMg that
modifies the VCG mechanism by paying each agent i a quan-
tity equal to Si

n
is strategyproof, and is optimally balanced

across all surplus-anonymous mechanisms.

Proof Sketch. Strategyproofness follows immediately
from strategyproofness of VCG plus the fact that Si is in-
dependent of i’s reported valuation. The argument for op-
timality is omitted here for lack of space.

Any completely-anonymous mechanism is also surplus-
anonymous, and the conditions for complete-anonymity and
surplus-anonymity coincide in symmetric domains (e.g.,
AON). RMg is thus completely-anonymous when applied
to symmetric domains, and surplus-anonymous otherwise.
It is easy to verify that the AON mechanism RM is a spe-
cial case of RMg—Si in an AON domain is equal to the
second highest of the bids placed by agents other than i.

It can be shown that no mechanism, including RMg, is
optimally-balanced when anonymity considerations are com-
pletely dropped. For instance, a mechanism that redis-
tributes Si to a randomly selected agent i, and none to other
agents, will in some cases redistribute more surplus than
RMg; however, such a mechanism is clearly not optimally-
balanced.

4.1 Redistribution in Allocation Problems
We’ve been discussing redistribution in the context of gen-

eral social choice or decision-making problems. An impor-
tant subclass of social choice problems consists of those in
which a decision must be made on how to allocate goods
amongst a group of competing agents. The most basic al-
location problem is that in which a single item is available;
this limited case (usually) falls within the AON class.4 Gen-
erally, an allocation problem consists of a number of sellers
3A symmetric domain is one in which the space of possible
valuation reports is identical for each agent.
4The exception is when there are externalities, e.g., when
agent i is happy if his friend agent j is allocated the item.



who bring goods to the system, and a number of interested
buyers, each with preferences over the goods that are poten-
tially combinatorial in nature.

Sometimes in such domains allocation mechanisms are se-
lected to maximize revenue to the seller(s), but there are
many significant cases in which it is preferable to keep as
much wealth as possible in the hands of the agents. For
example, consider the allocation of job time on a publicly
owned super-computer among a community of researchers.
Resources like this are often established with the mandate
of maximizing benefit to the public good (efficiency); if a
VCG-based allocation were implemented a surplus would
result, fair redistribution of which would go further toward
satisfying this mandate.

In the vast majority of allocation problems, the following
are generally accepted to hold: agents receive no value if
they aren’t allocated anything (normalization); agents’ val-
ues monotonically increase as they receive more goods (free
disposal); and agents have no preferences over allocations to
other agents (no externalities). These intrinsic elements of
the allocation domain map directly to constraints on valu-
ation functions that can allow for significant strategyproof
redistribution of VCG surplus. Formally, let G be the set of
goods to be allocated, and for any bundle of goods b ⊂ G
let vi(b) be agent i’s value for obtaining b. Each agent i’s
valuation conforms to the following:

vi(∅) = 0

vi(b) ≤ vi(b ∪ {g}), ∀b⊂G, g∈G

Consider the following valuations of three agents in
an allocation problem with two goods, A and B, where
{X1, X2, X3} represents the outcome in which bundles X1,
X2, and X3 are allocated to agents 1, 2, and 3 respectively.

v1 v2 v3

{AB, ∅, ∅} 12 0 0
{∅, AB, ∅} 0 10 0
{∅, ∅, AB} 0 0 11
{A, B, ∅} 4 6 0
{A, ∅, B} 4 0 5
{B, A, ∅} 5 7 0
{B, ∅, A} 5 0 7
{∅, A, B} 0 7 5
{∅, B, A} 0 6 7

Table 2: 2-good, 3-agent allocation problem.

The efficient outcome is to allocate A to agent 3 and B to
agent 2. Applying RMg, agent payoffs are as follows:

πi = vi(o
∗) +

X

j∈I\{i}

v̂j(o
∗) −

X

j∈I\{i}

v̂j(o
∗
−i) + Zi

π1 = 0 + 13 − 13 +
8

3
=

8

3

π2 = 6 + 7 − 12 +
11

3
=

14

3

π3 = 7 + 6 − 12 +
10

3
=

13

3

Using VCG with no redistribution, total social utility is 2
and payment to the center is 11. 9.67 of this (88% of surplus)
can be redistributed to the agents under RMg, yielding a
social utility of 11.67, a nearly 5-fold improvement.

5. SIMULATIONS

5.1 Computing redistribution payments
Determining redistribution payments under RMg

amounts to computing surplus guarantee Si for each agent
i, and then merely dividing by n. In a broad range of
domains, a simple algorithm for computing Si exists.
For example, in AON and in fact any typical5 allocation
domain, Si can be computed as follows: consider vi to
be as high as possible for outcome o∗, and 0 for all other
outcomes; then compute the VCG surplus with this vi and
all other agents’ reported valuations. This simple algorithm
does not hold in general (i.e., not for all possible sets of
value constraints); however, we can always compute Si

through a mixed-integer programming (MIP) specification
of equation (1). We briefly outline the formulation here.

The objective in the MIP for agent i’s payment is to min-
imize VCG surplus, and the primary variables are vi(o) for
each o ∈ O. Representing the program constraints is rela-
tively straightforward, but some care must be taken in han-
dling equation (2) and the inner maximization in (1). In
both cases there are non-linearities. In (2), for instance,
we must specify co · vi(o) for each outcome o, where co is
a boolean variable representing whether or not o is chosen
as the outcome that maximizes social welfare. We can get
around this issue by representing co · vi(o) with a new vari-
able v′

i(o), and including the following constraints:

v′
i(o) ≤ vi(o)

v′
i(o) ≤ co · M

where M is a value larger than the maximum possible value
an agent could have for any outcome. v′

i(o) will then be
vi(o) if o∗ = o, and 0 otherwise, as desired.

While solving a mixed-integer program has exponential
worst-case running time, in practice we were able to quickly
find solutions to very large problems. Determining redistri-
bution payments in a 100 agent, 100 outcome problem took
24 seconds for each agent.6 Note that the MIPs for calcu-
lating agent payments (one for each agent) are independent
of each other, and thus all can be solved in parallel.

5.2 Numerical results
In order to understand how much redistribution can be

achieved for valuations under different levels of mutual con-
straint, we performed an empirical analysis on large sets of
randomly generated problem instances (sets of valuations),
each with the same number of outcomes as agents. We gen-
erated valuations according to the following process, where
e is an “exclusivity” (between agent valuations) parame-
ter representing the extent to which a domain has “all-or-
nothing properties.” We chose a maximum value for each
agent i’s valuation function uniformly at random between 0
and 100. We then chose each vi(oi) uniformly at random
between 0 and maxvali, and vi(oj 6=i) uniformly at random
between 0 and (1 − e) · maxvali. So when e = 1, we have
a completely AON domain; when e = 0 there are no ex-
clusivity constraints between agent valuations. The graph

5One without valuation space constraints beyond the stan-
dard normalization, free disposal, and no externalities as-
sumptions.
6Solutions were obtained using the commercial solver
CPLEX, run on a 1.6 GHz Pentium 4 PC.



below plots the percentage of VCG surplus that could be
redistributed as a function of the parameter e, for problems
with various numbers of agents. For each number of agents,
100 samples were computed for each value of e between 0
and 1 in increments of 0.05.
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Figure 1: Percent of surplus redistributed as a function

of mutual “exclusivity” between agent valuations.

Notably, redistribution remains nearly constant for values
of e between 0 and 0.5, and then increases roughly linearly
with e from 0.5 to 1. As expected, the possibility for redis-
tribution grows with the number of agents.

6. A CENTER-LESS IMPLEMENTATION
Consider the problem of building a decision-making mech-

anism that doesn’t require a center. This is intuitively de-
sirable, as it’s easy to imagine scenarios in which a group of
agents must determine an allocation or decide on an action
to take without the benefit of a trusted central authority.7

Theorem 7. RMg can be implemented in Nash equilib-
rium without the facilitation of a center when the following
conditions hold:

i) no agent acting alone has the power to obstruct realiza-
tion of a specified outcome or transfer payments, while
n − 1 agents acting together do.

ii) agents can simultaneously “broadcast” valuations to all
other agents, and can compute and perform transfers.

iii) agents have the capacity to publicly destroy money.

Proof Sketch. The first condition brings abiding by
the mechanism into Nash equilibrium—unilaterally deviat-
ing cannot be beneficial. The second and third conditions
ensure that agents will be able to execute what the mech-
anism prescribes. With (ii), all agents can recognize the
efficient outcome, and deliver the appropriate redistribution
payment to each “receiving” agent. (iii) allows the “paying”
agents (just a1 in AON domains) to demonstrably receive
the appropriate payoff. The quantity Zc that cannot stay
within the group of agents would normally be transfered to
a center, but its destruction is a satisfactory substitute.

In AON domains, at least, where communicating a val-
uation amounts merely to a public announcement of a sin-
gle (value, outcome) pair, satisfaction of these conditions is
7See [Shneidman and Parkes, 2004; Petcu et al., 2006] for
further discussion of distributed implementations that seek
to minimize the role of a center.

quite plausible. Then using RM, it is possible in equilibrium
for a large group of self-interested agents to independently
reach the socially optimal outcome, and jointly reap nearly
all fruits of the chosen action via redistribution.

7. CONCLUSION
In this paper we argued for the desirability of redistribut-

ing VCG payments back among participants in a mecha-
nism, and showed it is feasible in a broad range of set-
tings, including allocation problems. We presented the opti-
mally balanced redistribution mechanism, that which always
redistributes the maximal amount that any strategyproof,
efficient, IR, and no-deficit mechanism could. In “all-or-
nothing” domains, a class which encompasses all typical
single-item allocation problems, the mechanism is perfectly
budget-balanced in the limit.

The VCG mechanism maximizes transfers from the group
of agents, which is sometimes appealing because transfers
amount to revenue for a center. But in many decision prob-
lems the transfers are, in a sense, actually waste; in this pa-
per we specified the mechanism that minimizes that waste.
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