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Abstract
This paper introduces a new distinctive class
of combinatorial auction protocols called price-
oriented, rationing-free (PORF) protocols. The
outline of a PORF protocol is as follows: (i) for
each bidder, the price of each bundle of goods is de-
termined independently of his/her own declaration
(while it can depend on the declarations of other
bidders), (ii) we allocate each bidder a bundle that
maximizes his/her utility independently of the allo-
cations of other bidders (i.e., rationing-free).
Although a PORF protocol appears quite different
from traditional protocol descriptions, surprisingly,
it is a sufficient and necessary condition for a proto-
col to be strategy-proof. Furthermore, we show that
a PORF protocol satisfying additional conditions
is false-name-proof; at the same time, any false-
name-proof protocol can be described as a PORF
protocol that satisfies the additional conditions. A
PORF protocol is an innovative characterization
of strategy-proof protocols and the first attempt to
characterize false-name-proof protocols. Such a
characterization is not only theoretically significant
but also useful in practice, since it can serve as a
guideline for developing new strategy/false-name
proof protocols. We present a new false-name-
proof protocol based on the concept of a PORF pro-
tocol.

1 Introduction
Internet auctions have become an integral part of Electronic
Commerce and a promising field for applying AI technolo-
gies. Among various studies related to Internet auctions,
those on combinatorial auctions have lately attracted consid-
erable attention (an extensive survey is presented in [de Vries
and Vohra, 2003]). Although conventional auctions sell a sin-
gle item at a time, combinatorial auctions sell multiple items
with interdependent values simultaneously and allow the bid-
ders to bid on any combination of items. In a combinatorial
auction, a bidder can express complementary/substitutable
preferences over multiple bids. By taking into account com-
plementary/substitutable preferences, we can increase the
participants’ utilities and the revenue of the seller.

One important characteristic of an auction protocol is that
it is strategy-proof. A protocol is strategy-proof if, for each
bidder, declaring his/her true evaluation values is a dominant
strategy, i.e., an optimal strategy regardless of the actions of
other bidders. In theory, the revelation principle states that in
the design of an auction protocol, we can restrict our attention
to strategy-proof protocols without loss of generality [Myer-
son, 1981]. In other words, if a certain property (e.g., Pareto
efficiency) can be achieved using some auction protocol in a
dominant-strategy equilibrium, i.e., a combination of domi-
nant strategies of bidders, the property can also be achieved
using a strategy-proof auction protocol.

Furthermore, a strategy-proof protocol is also practically
useful for applying to Internet auctions. For example, if we
use the first-price sealed-bid auction (which is not strategy-
proof), the bidding prices must be securely concealed until
the auction is closed. On the other hand, if we use a strategy-
proof protocol, knowing the bidding prices of other bidders is
useless; thus, such security issues become less critical.

Also, the author pointed out the possibility of a new type
of fraud called false-name bids, which utilizes the anonymity
available in the Internet [Yokoo et al., forthcoming; 2001a;
2000; Sakurai et al., 1999]. False-name bids are bids sub-
mitted under fictitious names, e.g., multiple e-mail addresses.
Such a dishonest action is very difficult to detect, since identi-
fying each participant on the Internet is virtually impossible.

We say a protocol is false-name-proof if, for each bidder,
declaring his/her true evaluation values using a single iden-
tifier (although the bidder can use multiple identifiers) is a
dominant strategy. As for strategy-proof protocols, the reve-
lation principle holds for false-name-proof protocols [Yokoo
et al., forthcoming; 2000]. Thus, we can restrict our attention
to false-name-proof protocols without loss of generality.

Given that strategy/false-name proof protocols are impor-
tant both in theory and practice, obvious questions we need
to answer are, how can we design such protocols and what
features do these protocols have in common, i.e., charac-
terization of the protocols. Although there have been sev-
eral works on characterizing strategy-proof protocols (e.g.,
[Roberts, 1979; Holmstrom, 1979]), as far as the author is
aware, there is no work on characterizing false-name-proof
protocols.

In this paper, we introduce an innovative characterization
of strategy/false-name proof protocols by introducing a new



distinctive class of combinatorial auction protocols called
price-oriented, rationing-free (PORF) protocols. The outline
of a PORF protocol is as follows.

• For each bidder, the price of each bundle of goods is
determined independently of his/her own declaration,
while it can depend on the declarations of other bidders.

• We allocate each bidder a bundle that maximizes his/her
utility independently of the allocations of other bidders
(i.e., rationing-free).

A PORF protocol looks quite different from traditional
protocol descriptions. In a traditional protocol, the alloca-
tions of goods are usually determined first, and then the pay-
ments of the winners are determined. On the other hand, in
a PROF protocol, the prices of bundles for each bidder are
determined first, and then the allocation is determined inde-
pendently based on these prices.

However, surprisingly, a PORF protocol captures all the es-
sential features of a strategy-proof protocol, i.e., if a protocol
can be described as a PORF protocol, it is strategy-proof, and
vice versa. Also, if a protocol can be described as a PORF
protocol that satisfies additional conditions, it is false-name-
proof, and vice versa.

As far as the author is aware, a PORF protocol is an in-
novative characterization of strategy-proof protocols and the
first attempt to characterize false-name-proof protocols. Such
a characterization is not only theoretically significant but also
useful in practice, since it can serve as a guideline for devel-
oping new strategy/false-name proof protocols. We present a
new false-name-proof protocol based on the idea of a PORF
protocol.

2 Problem Settings
Assume there are a set of bidders N = {1, 2, . . . , n} and a
set of goods M = {1, 2, . . . , m}. Each bidder i has his/her
preferences over B ⊆ M . Formally, we model this by sup-
posing that bidder i privately observes a parameter, or signal,
θi, which determines his/her preferences. We refer to θ i as the
type of bidder i. We assume θi is is drawn from a set Θ. We
assume a quasi-linear, private value model with no allocative
externality, defined as follows.

Definition 1 (utility of a bidder)
The utility of bidder i, when i obtains a bundle, i.e., a subset
of goods B ⊆ M and pays pB,i, is represented as v(B, θi)−
pB,i.

We assume evaluation value v is normalized by v(∅, θi) = 0.
Also, we assume for all i, B, v(B, θi) ≤ ∞ holds. Further-
more, we assume free disposal, i.e., v(B ′, θi) ≥ v(B, θi) for
all B′ ⊇ B.

In a traditional definition [Mas-Colell et al., 1995], an auc-
tion protocol is (dominant-strategy) incentive compatible (or
strategy-proof) if declaring the true type/evaluation values is
a dominant strategy for each bidder, i.e., an optimal strategy
regardless of the actions of other bidders.

In this paper, we extend the traditional definition of incen-
tive compatibility so that it can address false-name bid manip-
ulations, i.e., we define that an auction protocol is (dominant-
strategy) incentive compatible if declaring the true type by

using a single identifier is a dominant strategy for each bid-
der. To distinguish between the traditional and extended def-
initions of incentive compatibility, we refer to the traditional
definition as strategy-proof and to the extended definition as
false-name-proof.

An auction protocol is individually rational if no partici-
pant suffers any loss in a dominant-strategy equilibrium, i.e.,
the payment never exceeds the evaluation value of the ob-
tained goods. In a private value auction, individual rationality
is indispensable; no bidder wants to participate in an auction
where he/she might be charged more money than he/she is
willing to pay. Therefore, in this paper, we restrict our atten-
tion to individually rational protocols. Also, we restrict our
attention to deterministic protocols, which always obtain the
same outcome for the same input.

We say an auction protocol is Pareto efficient when the sum
of all participants’ utilities (including that of the auctioneer),
i.e., the social surplus, is maximized in a dominant-strategy
equilibrium. The author has proved that there exists no false-
name-proof protocol that satisfies Pareto efficiency and indi-
vidual rationality at the same time [Yokoo et al., forthcoming;
Sakurai et al., 1999]. Therefore, we need to sacrifice effi-
ciency to some extent when false-name bids are possible.

3 Price-oriented, Rationing-Free (PORF)
Protocol

A PORF Protocol is defined as follows.

Definition 2 (PORF Protocol)

• Each bidder i declares his/her type θ̃i, which is not nec-
essarily the true type θi.

• For each bidder i, for each bundle B ⊆ M , the price
pB,i is defined. This price must be determined indepen-
dently of i’s declared type θ̃i, while it can be dependent
on declared types of other bidders.

• We assume p∅,i = 0 holds. Also, if B ⊆ B ′, pB,i ≤
pB′,i holds.

• For bidder i, a bundle B∗ is allocated, where B∗ =
arg maxB⊆M v(B, θ̃i) − pB,i. Bidder i pays pB∗,i. If
there exist multiple bundles that maximize i’s utility, one
of these bundles is allocated.

• The result of the allocation satisfies allocation-
feasibility, i.e., for two bidders i, j and bundles allo-
cated to these bidders B∗

i and B∗
j , B∗

i ∩ B∗
j = ∅ holds.

It is straightforward to show that a PORF protocol is strategy-
proof. The price of bidder i is determined independently of
i’s declared type, and he/she can obtain the bundle that maxi-
mizes his/her utility independently of the allocations of other
bidders, i.e., the protocol is rationing-free.

On the other hand, in a PORF protocol, the prices must
be determined appropriately to satisfy allocation-feasibility 1.

1Since the price for each bidder can be different and the price
of a bundle is not necessarily the sum of the prices of all goods in
the bundle, there is no direct relation between the prices that achieve
allocation-feasibility and equilibrium prices.



The definition of a PORF protocol requires that if there exist
multiple bundles that maximize i’s utility, then one of these
bundles must be allocated, but it does not specify exactly
which bundle should be allocated. Therefore, if there exist
multiple choices, the auctioneer can adjust the allocation of
multiple bidders in order to satisfy allocation-feasibility.

Next, we provide some examples of PORF protocols.
Since a PORF protocol is strategy-proof, in the rest of this
paper, we assume each bidder i declares his/her true type θ i.

Example 1 Let us consider the auction of a single unit of a
single item.

• The price of the only bundle B = M is defined as pB,i =
maxj �=i v(B, θj).

This protocol is identical to the Vickrey auction protocol
[Vickrey, 1961].

More specifically, for the bidder with the highest evalua-
tion value, the price of the good is equal to the second highest
evaluation value. On the other hand, for other bidders, the
price is equal to the highest evaluation value, so nobody ex-
cept the bidder with the highest evaluation value is willing to
buy the good.

Example 2 Let us consider a combinatorial auction. To sim-
plify the protocol description, we introduce the following no-
tation. For a set of goods B and a set of bidders X , where
ΘX is a set of types of bidders in X , we define V ∗(B, ΘX)
as the sum of the evaluation values of X when B is allocated
optimally among X .

To be precise, for an feasible allocation g = (B1, B2, . . .),
where

⋃
j∈X Bj ⊆ B and for all j �= j ′, Bj ∩ Bj′ = ∅,

V ∗(X, B) is defined as maxg

∑
j∈X v(Bj , θj), where θj is

the type of bidder j.
The price of bundle B for bidder i is defined as follows:

pB,i = V ∗(M, ΘN\{i}) − V ∗(M \ B, ΘN\{i}).

This protocol is identical to the Vickrey-Clarke-Groves
(VCG) mechanism [Vickrey, 1961; Clarke, 1971; Groves,
1973], i.e., if B is allocated to i in a Pareto efficient alloca-
tion, then pB,i is equal to the payment in the VCG; otherwise,
pB,i is larger than v(B, θi).

Let us describe how this protocol works. Assume there
are two goods 1 and 2, and three bidders, bidder 1, 2, and 3,
whose types are θ1, θ2, and θ3, respectively. The evaluation
value for a bundle v(B, θi) is determined as follows.

{1} {2} {1, 2}
θ1 6 0 6
θ2 0 0 8
θ3 0 5 5

Accordingly, the prices of these bundles for each bidder is
given as follows.

{1} {2} {1, 2}
bidder 1 3 8 8
bidder 2 6 5 11
bidder 3 8 2 8

As a result, bidder 1 obtains good 1 with price 3, and bidder 3
obtains good 2 with price 2.

4 Strategy-proof → PORF
A PORF protocol looks quite different from traditional proto-
col descriptions, in which the allocation of the goods/winners
are determined, and then the payments of these winners are
determined. In a PROF protocol, the prices of bundles for
each bidder is determined first, and then the allocation is
determined based on these prices. In a traditional protocol
description, the payment of bidder i must be determined in-
dependently of i’s type to make the protocol strategy-proof.
This is similar to the fact that the price of bidder i in a PORF
protocol must be determined independently of i’s declared
type. The most distinctive characteristic of a PORF protocol
is that it is rationing-free, i.e., each bidder can obtain the op-
timal bundle based on the prices, and the allocation for each
bidder is done independently (except when a bidder is totally
indifferent between multiple bundles).

Surprisingly, a PORF protocol is not only a sufficient con-
dition that a protocol is strategy-proof, but it is also a neces-
sary condition, i.e., the following theorem holds.

Theorem 1 If a protocol is strategy-proof, then the protocol
can be described as a PORF protocol.

The argument presented in this section is very general and
requires only the fact that a protocol is deterministic and in-
dividually rational.

The outline of the proof in the remainder of this section
can be summarized as follows. First, we show that if a bidder
is single-minded (Definition 3), i.e., he/she is interested only
in a particular bundle, any strategy-proof protocol can be de-
scribed as a PORF protocol (Lemma 3), i.e., the price of the
bundle is determined and the bidder will obtain the bundle if
his/her evaluation value is larger than the price. An intuitive
explanation for this result is that if such a price does not exist,
a single-minded bidder can have an incentive to under/over-
declare his/her evaluation value for the bundle. The only way
to make the protocol strategy-proof is to set a fixed threshold
based on other bidders’ evaluation values, which determines
whether the single-minded bidder will obtain the bundle or
not.

Next, we show that this result can be extended to the case
where a bidder is k-minded (Definition 5), i.e., a bidder is in-
terested in multiple bundles at the same time (Lemma 5). An
intuitive explanation for this result is as follows. A single-
minded bidder can pretend to be a k-minded bidder, and
vice versa. Therefore, to a k-minded bidder, the protocol
must give the results that are basically equivalent to a single-
minded bidder

Any bidder can be represented as a (2m − 1)-minded bid-
der, where m is the number of goods and 2m−1 is the number
of all possible bundles (except an empty set). Thus, we can
show that any strategy-proof protocol can be represented as a
PROF protocol.

In the following, we show the detailed proof of Theorem 1.
To derive the theorem, we introduce notions such as single-
minded bidder, monotone allocation rule, and critical-value,
which are used in [Lehmann et al., 2002; Mu’alem and Nisan,



2002]. The proofs of Lemma 1 and 2 are basically due to
[Lehmann et al., 2002; Mu’alem and Nisan, 2002].

Definition 3 (single-minded bidder)
We say bidder i is single-minded if i requires only one bundle
Bi, i.e., for any bundle B, if Bi ⊆ B, then v(B, θi) = vi,
otherwise, v(B, θi) = 0.

If bidder i is single-minded, i.e., the declared type of i can
be considered to be single-minded, then a PORF protocol can
be described as follows, assuming the set of other bidders
and their types are fixed. We denote this protocol as a PORF
protocol for a single-minded bidder.

• For bidder i, pi, which is the price of Bi, is defined. If
v(Bi, θi) > pi, then Bi (or a superset of Bi) is allocated
to bidder i and i pays pi. If v(Bi, θi) < pi, then no
good is allocated. If v(Bi, θi) = pi, then either Bi (or a
superset of Bi) is allocated and i pays pi, or no good is
allocated.

Definition 4 (monotone allocation rule)
We say a protocol is monotone for a single-minded bidder i if
the following condition is satisfied, assuming the set of other
bidders and their types are fixed.
If bundle Bi (or a superset of Bi) is allocated to bidder i
when i’s evaluation value for Bi is vi, then Bi (or a superset
of Bi) is also allocated when i’s evaluation value for B i is
v′i > vi.

The following lemma holds.

Lemma 1 If a protocol is strategy-proof, then the protocol is
monotone for a single-minded bidder.

Proof: If a protocol is not monotone, there exists a case
where Bi (or a superset) is allocated to bidder i when i’s eval-
uation value for Bi is vi, while Bi (or a superset) is not allo-
cated to bidder i when i’s evaluation value for B i is v′i > vi.
Since the protocol is individually rational, the payment when
i’s evaluation value is vi must be less than or equal to vi.
Therefore, when i’s true evaluation value is v ′

i, if i truthfully
declares his/her type, i’s utility is 0, since neither Bi nor a
superset is allocated. However, if i declares a false type as a
single-minded bidder where the evaluation value for B i is vi,
i can obtain a positive utility. This contradicts the assumption
that the protocol is strategy-proof. �

Furthermore, the following lemma holds.

Lemma 2 If a protocol is monotone for a single-minded bid-
der, then there exists critical-value c that satisfies the follow-
ing condition, assuming the set of other bidders and their
types are fixed: if vi > c, Bi (or a superset) is allocated
to i, while if vi < c, no good is allocated.

Proof: Let us assume that no critical value exists. Then, for
an arbitrary value c′, either one of the following two cases
holds.

case i: there exists v′ > c′, where bidder i cannot obtain Bi

when i’s evaluation value is v ′.

case ii: there exists v′′ < c′, where bidder i can obtain Bi

when i’s evaluation value is v ′′.

If we set c′ = 0, case ii cannot be true so case i must hold.
Let us re-assign c′ as v′ and repeat this procedure until case
ii occurs (if case ii never occurs, then ∞ becomes a critical
value). In this case, bidder i cannot obtain B i when the eval-
uation value is c′, while i can obtain Bi when the evaluation
value is v′′ < c′. This contradicts the assumption that the
protocol is monotone. �

Next, we show that the following lemma holds.

Lemma 3 If a protocol is strategy-proof, then, for a single-
minded bidder, the protocol can be described as a PORF pro-
tocol for a single-minded bidder, i.e., if i’s evaluation value
for Bi is larger than a given value pi, then Bi (or a superset)
is allocated and i’s payment is pi. If i’s evaluation value for
Bi is smaller than pi, no good is allocated.

Proof: From Lemma 1 and 2, the protocol is monotone and
there exists critical-value c, i.e., Bi (or a superset) is allocated
when the evaluation value is larger than c, while no good is
allocated when the evaluation value is smaller than c. The
only thing we need to show is that the payment is equal to c
when Bi (or a superset) is allocated. Let us assume that the
payment is c′ �= c and derive a contradiction.

First, let us consider the case c′ < c, i.e., when the evalua-
tion value of i is vi > c, i obtains Bi (or a superset) but the
payment is c′ < c. When the evaluation value of i is c′ + ε,
if i declares the true type, no good is allocated and the ob-
tained utility is 0, while if i declares a false type where the
evaluation value is vi, i can obtain Bi (or a superset) and the
payment is c′, thus the obtained utility becomes positive. This
contradicts the assumption that the protocol is strategy-proof.

Next, let us consider the case c′ > c, i.e., when the evalu-
ation value of i is vi > c, i obtains Bi (or a superset) but the
payment is c′ > c. If i declares a false type where the evalu-
ation value is c + ε, i can obtain Bi (or a superset) because c
is a critical value. Since the protocol is individually rational,
the payment must be less than or equal to c + ε, which is less
than c′, i.e., the payment when i declares the true type. This
contradicts the assumption that the protocol is strategy-proof.

From the above, the protocol can be described as a PORF
protocol for a single-minded bidder where p i = c. �

Definition 5 (k-minded bidder)
We say bidder i is a k-minded bidder if i requires exactly one
bundle from k bundles Bi1 , . . . , Bij , . . . , Bik

. Let us repre-
sent i’s evaluation value for Bij as vij . For notation simplic-
ity, let us assume Bi0 = ∅ and vi0 = 0. The evaluation value
of i for bundle B is defined as follows.
v(B, θi) = max0≤j≤k vij , where Bij ⊆ B.

From Lemma 3, if bidder i is a single-minded bidder who
requires only Bij , then a strategy-proof protocol must be a
PORF protocol for a single-minded bidder. Let us represent
the price for bidder i of Bij in this protocol as pij .

First, we show that the following lemma holds.

Lemma 4 If a protocol is strategy-proof, then, for k-minded
bidder i, the payment when i obtains B is given by pB,i =
max0≤j≤k pij , where Bij ⊆ B.

Proof: Let us assume that j ′ = arg max0≤j≤k pij where
Bij ⊆ B. We derive a contradiction assuming pB,i �= pij′ .
First, let us consider the case pB,i < pij′ . Assume that i is a



single-minded bidder who requires B ij′ only, and i’s evalua-
tion value for Bij′ is pij′ . In this case, if i declares the true
type, the obtained utility is 0. On the other hand, if i declares
his/her type as a k-minded bidder, i can obtain B ⊇ B ij′
and the payment is pB,i < pij′ , thus i can obtain a positive
utility. This contradicts the assumption that the protocol is
strategy-proof.

Next, let us consider the case pB,i > pij′ . If i declares
its type as a single-minded bidder who requires only B ij′ , i
can obtain Bij′ (or a superset) and the payment is pij′ , which
is less than pB,i, i.e., the payment when he/she declares the
true type. This contradicts the assumption that the protocol is
strategy-proof. �

Finally, we show that the following lemma holds.

Lemma 5 If a protocol is strategy-proof, then, for a k-
minded bidder i, the protocol can be described as a PORF
protocol for a k-minded bidder, i.e., for each B ij , pij , which
is the price for bidder i, is defined, and the protocol assigns
Bij∗ (or a superset), where j∗ = arg max0≤j≤k(vij − pij ).
The payment is pij∗ .

Proof: We derive a contradiction assuming that a strategy-
proof protocol assigns B �⊇ Bij∗ for k-minded bidder i. Let
us choose j ′′ = argmax0≤j≤k vij , where Bij ⊆ B. From
the definition of a k-minded bidder, v(B, θ i) = vij′′ holds.
Furthermore, from the fact that B �⊇ Bij∗ , vij∗ − pij∗ >
vij′′ − pij′′ holds.

From Lemma 4, the payment when i obtains B is given by
pB,i = max0≤j≤k pij , where Bij ⊆ B. Obviously, pB,i ≥
pij′′ holds. Thus, vij∗ −pij∗ > vij′′ −pij′′ ≥ v(B, θi)−pB,i

holds. This formula represents the fact that the utility when
i declares the true type (i.e., v(B, θi) − pB,i) is less than the
utility when i declares a false type, where i is a single-minded
bidder that requires only Bij∗ (i.e., vij∗ − pij∗ ). This contra-
dicts the assumption that the protocol is strategy-proof. �

Any bidder can be represented as a (2m − 1)-minded bid-
der, where m is the number of goods and 2m−1 is the number
of all possible bundles (except an empty set). Since Lemma 5
holds for all k, from Lemma 5, we can derive Theorem 1.

5 PORF with additional conditions ↔
False-name-proof

From the definition, if a protocol is false-name-proof, it is
also strategy-proof. Therefore, it is obvious that false-name-
proof → PORF holds. On the other hand, PORF → false-
name-proof does not hold in general. For example, the VCG
mechanism is strategy-proof, so it can be described as a
PORF protocol, but it is not false-name-proof, as shown in
[Yokoo et al., forthcoming; Sakurai et al., 1999].

In this section, we limit our attention to protocols that sat-
isfy the following condition.

Definition 6 (weakly-anonymous pricing rule (WAP))
For bidder i, the price of bundle B is given as a function
of types of other bidders, i.e., the price can be described as
p(B, ΘX), where X is the set of bidders except i, and ΘX is
the set of types of bidders in X .

The above condition requires that if two bidders are facing the
same types of opponents, their prices must be identical for all
bundles. The WAP condition is intuitively natural and virtu-
ally all well-known protocols, including the VCG, satisfy this
condition.

For a PORF protocol that satisfies the WAP condition, we
define the following additional condition.

Definition 7 (no super-additive price increase (NSA))
For all subset of bidders S ⊆ N and X = N \ S, and for
i ∈ S, let us denote Bi as a bundle that maximizes i’s utility,
then

∑
i∈S p(Bi,

⋃
j∈S\{i}{θj} ∪ ΘX) ≥ p(

⋃
i∈S Bi, ΘX).

An intuitive meaning of this condition is that the price of buy-
ing a combination of bundles (the right side of the inequality)
must be smaller than or equal to the sum of the prices for
buying these bundles separately (the left side).

The next theorem states that for a PORF protocol with the
WAP, the NSA is a sufficient condition for a protocol to be
false-name-proof.

Theorem 2 If a PORF protocol with the WAP satisfies the
NSA condition, then the protocol is false-name-proof.

Proof: The proof is rather clear. If a bidder uses a set of
identifiers S, then from the NSA condition, the bidder can
obtain the same set of goods by using a single identifier, while
the payment becomes smaller (or remains the same). �

We can show that for a PORF protocol with WAP, the NSA
is not only a sufficient condition but also a necessary condi-
tion, i.e., the following theorem holds.

Theorem 3 If a protocol is a PORF protocol with the WAP
and is false-name-proof, then it satisfies the NSA condition.

Proof: Let us assume that there exists a false-name-proof
protocol that can be described as a PORF protocol with the
WAP but does not satisfy the NSA condition. More pre-
cisely, for a set of identifiers S, X = N \ S, and for
i ∈ S, Bi is the bundle that maximizes i’s utility, but∑

i∈S p(Bi,
⋃

j∈S\{i}{θj} ∪ ΘX) < p(
⋃

i∈S Bi, ΘX).
Let us assume the case where bidder i′ is facing oppo-

nents whose types are ΘX . Also, let us assume bidder i′ is
single-minded for bundle

⋃
i∈S Bi, and the evaluation value

is p(
⋃

i∈S Bi, ΘX). If bidder i′ declares his/her true type,
the obtained utility is 0 (since if i′ can obtain the bundle, the
payment is equal to his/her evaluation value). On the other
hand, if i′ uses a set of identifiers S, and for each i ∈ S,
he/she declares the type as θi, then for each identifier i, Bi is
obtained.

The sum of the payment is
∑

i∈S p(Bi,
⋃

j∈S\{i}{θj} ∪
ΘX), which is less than the evaluation value of i ′, i.e.,
p(

⋃
i∈S Bi, ΘX). Thus, bidder i′ can obtain positive utility

by utilizing false-name bids. This contradicts the assumption
that the protocol is false-name-proof. �

For the protocols that are strategy-proof (SP), false-name-
proof (FP), PORF, WAP, and NSA, the subset/superset rela-
tions can be illustrated as Figure 1. The VCG mechanism can
be described as a PORF protocol with WAP, but it does not
satisfy the NSA condition. Therefore, it is not false-name-
proof. One example of a false-name-proof protocol that does
not use the WAP rule is a dictatorial protocol where all goods



are allocated to one special bidder (the dictator) regardless of
other bidders’ evaluation values.

SP/PORF

FPWAP NSA

Figure 1: Relations of Protocols

Due to space limitations, we omit detailed descriptions, but
all existing false-name-proof protocols developed so far, e.g.,
the LDS [Yokoo et al., 2001a], the IR [Yokoo et al., 2001b],
and the GAL protocol [Terada and Yokoo, 2003], can be de-
scribed as a PORF protocol that satisfies the NSA condition.

6 New False-name-proof Protocol
In this section, we develop a new false-name-proof protocol
based on the concept of the PORF protocol. To simplify the
protocol description, we introduce a concept called a minimal
bundle.
Definition 8 (minimal bundle) Bundle B is called minimal
for bidder i if for all B′ ⊂ B and B′ �= B, v(B′, θi) <
v(B, θi) holds.
In this new protocol, the price of bundle B for bidder i is
defined as follows:
• pB,i = maxBj⊆M,j �=i v(Bj , θj), where B∩Bj �= ∅ and

Bj is minimal for bidder j.
In short, the price of bundle B is equal to the highest evalua-
tion value of a bundle, which is minimal and conflicting with
bundle B.

Compared with the LDS protocol [Yokoo et al., 2001a],
this protocol is much simpler and does not require any pa-
rameters to be set by the auctioneer, while in the LDS proto-
col, the auctioneer must carefully determine the reservation
price and the way of dividing goods into multiple bundles. If
all bidders are single-minded, this protocol is one example of
greedy protocols described in [Lehmann et al., 2002].

Let us describe how this protocol works. Let us assume
there are three goods 1, 2, and 3, and two bidders, bidder 1
and bidder 2, whose types are θ1, θ2, respectively. The evalu-
ation value for a bundle v(B, θi) is determined as follows.

{1} {2} {3} {1, 2} {2, 3} {1, 3} {1, 2, 3}
θ1 0 0 60 210 60 60 210
θ2 0 110 110 110 110 110 110

These evaluation values mean that bidder 1 is 2-minded for
bundles {1, 2} and {3}, while bidder 2 is 2-minded for bun-
dles {2} and {3}. These bundles are minimal bundles. The
prices of these bundles are given as follows.

{1} {2} {3} {1, 2} {2, 3} {1, 3} {1, 2, 3}
bidder 1 0 110 110 110 110 110 110
bidder 2 210 210 60 210 210 210 210

As a result, bundle {1, 2} is allocated to bidder 1 and bundle
{3} is allocated to bidder 2.

It is clear that this protocol satisfies the allocation-
feasibility. For each good l, let us choose bidder j ∗ and bun-
dle B∗

j that maximize v(Bj , θj), where l ∈ Bj and Bj is
minimal for bidder j. Then, only bidder j ∗ is willing to ob-
tain a bundle that contains good l. For all other bidders, the
price of a bundle that contains l is higher than (or equal to)
his/her evaluation value.

Furthermore, it is clear that this protocol satisfies the
NSA condition. In this pricing scheme, p(B ∪ B ′, ΘX) =
max(p(B, ΘX), p(B′, ΘX)) holds for all B, B ′, and ΘX .
Therefore, the following formula holds.

p(
⋃

i∈S

Bi, ΘX) = max
i∈S

p(Bi, ΘX) ≤
∑

i∈S

p(Bi, ΘX)

Furthermore, in this pricing scheme, prices increase mono-
tonically by adding opponents, i.e., for all X ′ ⊇ X ,
p(B, ΘX′) ≥ p(B, ΘX) holds. Therefore, for each i,
p(Bi,

⋃
j∈S\{i}{θj} ∪ ΘX) ≥ p(Bi, ΘX) holds. Therefore,

the NSA condition, i.e.,
∑

i∈S p(Bi,
⋃

j∈S\{i}{θj}∪ΘX) ≥
p(

⋃
i∈S Bi, ΘX) holds.

7 Discussions
As far as the author is aware, a PORF protocol is an innova-
tive characterization of strategy-proof protocols and the first
attempt to characterize false-name-proof protocols. Here, we
discuss several previous works on characterizing strategy-
proof protocols.

In [Lehmann et al., 2002; Mu’alem and Nisan, 2002], it
is shown that if there exist only single-minded bidders, a
strategy-proof protocol is monotonic and has a critical value.
Since their motivation is to develop computationally efficient
strategy-proof protocols that can achieve semi-optimal allo-
cations, they do not extend their results to more general cases
such as k-minded bidders.

In [Roberts, 1979], a characterization of strategy-proof
mechanisms is shown for general social choice problems. It
is shown that any strategy-proof protocol can be described as
a variation of the Groves mechanisms [Groves, 1973]. On
the other hand, in the model used in this paper, we assume
that the evaluation values of each bidder satisfy no allocative-
externality condition. Therefore, the results described in
[Roberts, 1979] cannot be applied, i.e., a PORF protocol is
not necessarily to be a variation of the Groves mechanisms.

In [Holmstrom, 1979], a characterization of strategy-proof
mechanisms is described. It is shown that with the assump-
tion that the preferences of each participant satisfy a condition
called smoothly-connected, any strategy-proof protocol that
satisfies Pareto efficiency must be an instance of the Groves
mechanisms. This result can be applied to the model used in
this paper since the smoothly-connected condition still holds.
Therefore, if we require that a protocol be Pareto efficient, it



is likely that the pricing scheme described in Example 2 is the
only way to make a PORF protocol Pareto efficient2.

As well as a PORF protocol is theoretically significant,
since it is an equivalent class of strategy-proof protocols, it
has practical importance since it can serve as a guideline for
developing new strategy/false-name proof protocols. Design-
ing a strategy/false-name proof protocol has been a difficult
task. As shown in Section 6, we successfully developed a
new false-name-proof protocol based on the idea of a PORF
protocol. The simplicity of this newly developed protocol
compared with the LDS protocol illustrates the expressive
power of a PORF protocol. Of course, we need to prove that a
PORF protocol satisfies allocation-feasibility. However, this
tends to be much easier than directly proving a protocol is
strategy/false-name proof, since we can assume each bidder
declares his/her true type by using a single identifier.

As for the computational cost of executing a protocol, a
naive implementation of a PORF protocol requires calculat-
ing prices for all bundles of all bidders. However, as in the
case of the VCG, we can describe a protocol either as a PORF
protocol or in a traditional manner in which an allocation of
goods is determined, and then the payments are calculated
based on the allocation. We can assume that the description
of a PORF protocol is not for actual implementation but for
serving as a normative guideline in proving characteristics of
a protocol.

8 Conclusions
In this paper, we introduced a new distinctive class of combi-
natorial auction protocols called PORF protocols. Although
a PORF protocol looks quite different from traditional proto-
col descriptions, surprisingly, it is a sufficient and necessary
condition for a protocol to be strategy-proof. Furthermore, we
showed that a PORF protocol satisfying additional conditions
is false-name-proof; at the same time, any false-name-proof
protocol can be described as a PORF protocol that satisfies
the additional conditions.

A PORF protocol is not only theoretically significant but
also useful in practice, since it can serve as a guideline for
developing new strategy/false-name proof protocols. We suc-
cessfully developed a new false-name-proof protocol based
on the idea of a PORF protocol. We are currently extending
the obtained results to combinatorial exchange.
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