Data processing example
- Scan a large (~ 10^7 bytes) file
- Print the 20 most frequently used words together with counts of how often they occur
- Need more specification?
- How do you do it?

Possible solutions
1. Use heavy duty data structures (Knuth)
 - Hash tries implementation
 - Randomized placement
 - Lots o’ pointers
 - Several pages
2. UNIX shell script (Doug McIroy)
   ```bash
   tr -cs "[:alpha:]" "[\n*]" < FILE | \
   sort | \
   uniq -c | \
   sort -n -r -k 1,1 | \
   head -20
   ```
 - Which is better?
 - K.I.S.?

Analyzing Algorithms
- Consider three solutions to SortByFreqs or ZipfsLaw
 - Sort, then scan looking for changes
 - Insert into Set, then count each unique string
 - Find unique elements without sorting, sort these, then count each unique string
 - Use a Map (TreeMap or HashMap)
- We want to discuss trade-offs of these solutions
 - Ease to develop, debug, verify
 - Runtime efficiency
 - Vocabulary for discussion

Dropping Glass Balls
- Tower with N Floors
- Given 2 glass balls
- Want to determine the lowest floor from which a ball can be dropped and will break
- How?
- What is the most efficient algorithm?
- How many drops will it take for such an algorithm (as a function of N)?
Glass balls revisited (more balls)

- Assume the number of floors is 100
- In the best case how many balls will I have to drop?
 1. 1
 2. 2
 3. 10
 4. 16
 5. 17
 6. 18
 7. 20
 8. 21
 9. 51
 10. 100

In the worst case, how many balls will I have to drop?

- Cost 1 + 1 + ... + 1 = N if repeated
- Cost is independent of N, constant-time cost

If there are \(n \) floors, how many balls will you have to drop? (roughly)

What is big-Oh about? (preview)

- Intuition: avoid details when they don’t matter, and they don’t matter when input size (N) is big enough
 - For polynomials, use only leading term, ignore coefficients
 - \(y = 3x \quad y = 6x-2 \quad y = 15x + 44 \)
 - \(y = x^2 \quad y = x^2-6x+9 \quad y = 3x^2+4x \)

- The first family is \(O(n) \), the second is \(O(n^2) \)
 - Intuition: family of curves, generally the same shape
 - More formally: \(O(\ell(n)) \) is an upper-bound, when \(n \) is large enough the expression \(c\ell(n) \) is larger
 - Intuition: linear function: double input, double time, quadratic function: double input, quadruple the time

Recall adding to list (class handout)

- Add one element to front of ArrayList
 - Shift all elements
 - Cost \(N \) for \(N \)-element list
 - Cost \(1 + 2 + ... + N = N(N+1)/2 \) if repeated
- Add one element to front of LinkedList
 - No shifting, add one link
 - Cost is independent of \(N \), constant-time cost
 - Cost \(1 + 1 + ... + 1 = N \) if repeated

More on O-notation, big-Oh

- Big-Oh hides/obscures some empirical analysis, but is good for general description of algorithm
 - Allows us to compare algorithms in the limit
 - \(20N \) hours vs \(N\) microsccons: which is better?
- O-notation is an upper-bound, this means that \(N \) is \(O(N) \), but it is also \(O(N^2) \); we try to provide tight bounds.
 - Formally:
 - A function \(g(N) \) is \(O(\ell(N)) \) if there exist constants \(c \) and \(n \) such that \(g(N) < cf(N) \) for all \(N > n \)

\[\text{Graph showing comparison of } g(N) \text{ and } cf(N) \]
Amortization: Expanding ArrayLists

- Expand capacity of list when add() called
- Calling add N times, doubling capacity as needed

<table>
<thead>
<tr>
<th>Item #</th>
<th>Resizing cost</th>
<th>Cumulative cost</th>
<th>Resizing Cost per item</th>
<th>Capacity After add</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3-4</td>
<td>4</td>
<td>6</td>
<td>1.5</td>
<td>4</td>
</tr>
<tr>
<td>5-8</td>
<td>8</td>
<td>14</td>
<td>1.75</td>
<td>8</td>
</tr>
<tr>
<td>$2^n+1 - 2^{n+1}$</td>
<td>2^{n+1}</td>
<td>$2^{n+2}-2$</td>
<td>around 2</td>
<td>2^{n+1}</td>
</tr>
</tbody>
</table>

- What if we grow size by one each time?

Big-Oh calculations from code

- Search for element in an array:
 - What is complexity of code (using O-notation)?
 - What if array doubles, what happens to time?

```java
for(int k=0; k < a.length; k++) {
  if (a[k].equals(target)) return true;
}
return false;
```

- Complexity if we call N times on M-element vector?
 - What about best case? Average case? Worst case?

Some helpful mathematics

- $1 + 2 + 3 + 4 + \ldots + N$
 - $N(N+1)/2$, exactly $= N^2/2 + N/2$ which is $O(N^2)$ why?
- $N + N + N + \ldots + N$ (total of N times)
 - $N+N = N^2$ which is $O(N^2)$
- $N + N + N + \ldots + N$ (total of $3N$ times)
 - $3N+N = 3N^2$ which is $O(N^2)$
- $1 + 2 + 4 + \ldots + 2^N$
 - $2^{n+1} - 1 = 2 \times 2^n - 1$ which is $O(2^N)$

- Impact of last statement on adding 2^{n+1} elements to a vector
 - $1 + 2 + \ldots + 2^{N} + 2^{n+1} = 2^{n+2}-1 = 4 \times 2^{n}-1$ which is $O(2^{n})$
 - resizing + copy = total (let $x = 2^{n}$)

Which graph is “best” performance?

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost per item</th>
<th>Cumulative cost</th>
<th>Resizing Cost</th>
<th>Capacity After add</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3-4</td>
<td></td>
<td>4</td>
<td>1.5</td>
<td>4</td>
</tr>
<tr>
<td>5-8</td>
<td></td>
<td>8</td>
<td>1.75</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$2^{n+1} - 2^{n+2}$</td>
<td>around 2</td>
<td>2^{n+1}</td>
</tr>
</tbody>
</table>
What's the Difference Here?

- How does find-a-track work? Fast forward?

<table>
<thead>
<tr>
<th>(N)</th>
<th>(O(\log N))</th>
<th>(O(N))</th>
<th>(O(N \log N))</th>
<th>(O(N^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.000003</td>
<td>0.00001</td>
<td>0.000033</td>
<td>0.0001</td>
</tr>
<tr>
<td>100</td>
<td>0.000007</td>
<td>0.00010</td>
<td>0.000664</td>
<td>0.1000</td>
</tr>
<tr>
<td>1,000</td>
<td>0.000010</td>
<td>0.00100</td>
<td>0.010000</td>
<td>1.0</td>
</tr>
<tr>
<td>10,000</td>
<td>0.000013</td>
<td>0.01000</td>
<td>0.132900</td>
<td>1.7 min</td>
</tr>
<tr>
<td>100,000</td>
<td>0.000017</td>
<td>0.10000</td>
<td>1.661000</td>
<td>2.78 hr</td>
</tr>
<tr>
<td>1,000,000</td>
<td>0.000020</td>
<td>1.0</td>
<td>19.9</td>
<td>11.6 day</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>0.000030</td>
<td>16.7 min</td>
<td>18.3 hr</td>
<td>318 centuries</td>
</tr>
</tbody>
</table>

Getting in front

- Suppose we want to add a new element
 - At the back of a string or an ArrayList or a ...
 - At the front of a string or an ArrayList or a ...
 - Is there a difference? Why? What's complexity?

- Suppose this is an important problem: we want to grow at the front (and perhaps at the back)
 - Think editing film clips and film splicing
 - Think DNA and gene splicing

- Self-referential data structures to the rescue
 - References, reference problems, recursion, binky

Contrast LinkedList and ArrayList

- See !SimpleList, SimpleLinkedList, SimpleArrayList
 - Meant to illustrate concepts, not industrial-strength
 - Very similar to industrial-strength, however

- ArrayList --- why is access \(O(1)\) or constant time?
 - Storage in memory is contiguous, all elements same size
 - Where is the 1st element? 40th? 360th?
 - Doesn’t matter what’s in the ArrayList, everything is a pointer or a reference (what about null?)
What about LinkedList?

- Why is access of Nth element linear time?
- Why is adding to front constant-time O(1)?

Linked list applications

- Remove element from middle of a collection, maintain order, no shifting. Add an element in the middle, no shifting
 - What’s the problem with a vector (array)?
 - Emacs visits several files, internally keeps a linked-list of buffers
 - Naively keep characters in a linked list, but in practice too much storage, need more esoteric data structures
- What’s \((3x^3 + 2x^2 + x + 5) + (2x^4 + 5x^3 + x^2 + 4x)\) ?
 - As a vector \((3, 0, 2, 0, 1, 5)\) and \((0, 2, 5, 1, 4, 0)\)
 - As a list \((3, 5), (2, 3), (1, 1), (5, 0)\) and ________?
 - Most polynomial operations sequentially visit terms, don’t need random access, do need “splicing”
- What about \((3x^{100} + 5)\) ?

ArrayLists and linked lists as ADTs

- As an ADT (abstract data type) ArrayLists support
 - Constant-time or O(1) access to the k-th element
 - Amortized linear or O(n) storage/time with add
 - Total storage used in n-element vector is approx. 2n, spread over all accesses/additions (why?)
 - Adding a new value in the middle of an ArrayList is expensive, linear or O(n) because shifting required
- Linked lists as ADT
 - Constant-time or O(1) insertion/deletion anywhere, but...
 - Linear or O(n) time to find where, sequential search
- Good for sparse structures: when data are scarce, allocate exactly as many list elements as needed, no wasted space/copying (e.g., what happens when vector grows?)

Linked list applications continued

- If programming in C, there are no “growable-arrays”, so typically linked lists used when # elements in a collection varies, isn’t known, can’t be fixed at compile time
 - Could grow array, potentially expensive/wasteful especially if # elements is small.
 - Also need # elements in array, requires extra parameter
 - With linked list, one pointer used to access all the elements in a collection
- Simulation/modeling of DNA gene-splicing
 - Given list of millions of CGTA... for DNA strand, find locations where new DNA/gene can be spliced in
 - Remove target sequence, insert new sequence
Linked lists, CDT and ADT

- As an ADT
 - A list is empty, or contains an element and a list
 - () or (x, (y, ()))

- As a picture

- As a CDT (concrete data type)
  ```java
  public class Node
  {
      String value;
      Node next;
      Node(String s,  Node link)
      {
          value = s;
          next = link;
      }
  }
  ```

Dissection of add-to-front

- List initially empty
- First node has first word
- Each new word causes new node to be created
- New node added to front
- Rhs of operator = completely evaluated before assignment

Building linked lists

- Add words to the front of a list (draw a picture)
 - Create new node with next pointing to list, reset start of list

  ```java
  public class Node {
      String value;
      Node next;
      Node(String s, Node link) {
          value = s;
          next = link;
      }
  }
  ```

 // ... declarations here
 Node list = null;
 while (scanner.hasNext()) {
 list = new Node(scanner.next(), list);
 }

- What about adding to the end of the list?

Standard list processing (iterative)

- Visit all nodes once, e.g., count them or process them

  ```java
  public int size(Node list) {
      int count = 0;
      while (list != null) {
          count++;
          list = list.next;
      }
      return count;
  }
  ```

- What changes in code above if we change what “process” means?
 - Print nodes?
 - Append “s” to all strings in list?
Standard list processing (recursive)

- Visit all nodes once, e.g., count them
  ```java
  public int recsize(Node list) {
      if (list == null) return 0;
      return 1 + recsize(list.next);
  }
  ```
- **Base case is almost always empty list: null pointer**
 - Must return correct value, perform correct action
 - Recursive calls use this value/state to anchor recursion
 - Sometimes one node list also used, two “base” cases
- **Recursive calls make progress towards base case**
 - Almost always using list.next as argument

Building linked lists continued

- What about adding a node to the end of the list?
 - Can we search and find the end?
 - If we do this every time, what’s complexity of building an N-node list? Why?
- Alternatively, keep pointers to first and last nodes of list
 - If we add node to end, which pointer changes?
 - What about initially empty list: values of pointers?
 - Will lead to consideration of header node to avoid special cases in writing code
- What about keeping list in order, adding nodes by splicing into list? Issues in writing code? When do we stop searching?

Recursion with pictures

- Counting recursively

```java
int recsize(Node list){
    if (list == null) return 0;
    return 1 + recsize(list.next);
}
```
Recursion and linked lists

- Print nodes in reverse order
 - Print all but first node and...
 - Print first node before or after other printing?

```
public void print(Node list) {
    if (list != null) {
        System.out.println(list.info);
        print(list.next);
    }
}
```

Changing a linked list recursively

- Pass list to method, return altered list, assign to list
 - Idiom for changing value parameters

```
list = change(list, "apple");
public Node change(Node list, String key) {
    if (list != null) {
        list.next = change(list.next, key);
        if (list.info.equals(key)) return list.next;
        else return list;
    }
    return null;
}
```

Complexity Practice

- What is complexity of Build? (what does it do?)
  ```
  public Node build(int n) {
      if (null == n) return null;
      Node first = new Node(n, build(n-1));
      for(int k = 0; k < n-1; k++) {
          first = new Node(n,first);
      }
      return first;
  }
  ```

- Write an expression for T(n) and for T(0), solve.
 - Let T(n) be time for build to execute with n-node list
 - T(n) = T(n-1) + O(n)

The Power of Recursion: Brute force

- Consider a possible APT: What is minimum number of minutes needed to type n term papers given page counts and three typists typing one page/minute? (assign papers to typists to minimize minutes to completion)
 - Example: {3, 3, 5, 9, 10} as page counts

- How can we solve this in general? Suppose we're told that there are no more than 10 papers on a given day.
 - How does the constraint help us?
 - What is complexity of using brute-force?