Backtracking, Search, Heuristics

- Many problems require an approach similar to solving a maze
 - Certain mazes can be solved using the “right-hand” rule
 - Other mazes, e.g., with islands, require another approach
 - If you have “markers”, leave them at intersections, don’t explore the same place twice

- What happens if you try to search the web, using links on pages to explore other links, using those links to ...
 - How many web pages are there?
 - What rules to webcrawlers/webspiders follow?
 - Who enforces the rules?
- Keep track of where you’ve been don’t go there again
 - Any problems with this approach?

Classic problem: N queens

- Can queens be placed on a chess board so that no queens attack each other?
 - Easily place two queens
 - What about 8 queens?
- Make the board N x N, this is the N queens problem
 - Place one queen/column
 - # different tries/column?
- Backtracking
 - Use “current” row in col
 - If ok, try next col
 - If fail, back-up, next row

Backtracking with Boggle

- Boggle™ played on 4 x 4 board
 - Other sizes possible
 - Form words by connecting letters horizontally, vertically, diagonally
 - Cannot re-use letters (normally)

- Two approaches
 - Build words from connections, find partial words in dictionary
 - Look up every word in the dictionary on the board
- Which is better? How is backtracking used?
Basic ideas in backtracking search

- We need to be able to enumerate all possible choices/moves
 - We try these choices in order, committing to a choice
 - If the choice doesn’t pan out we must undo the choice
 - This is the backtracking step, choices must be undoable

- Process is inherently recursive, so we need to know when the search finishes
 - When all columns tried in N queens
 - When all board locations tried in boggle
 - When every possible moved tried in Tic-tac-toe or chess?
 - Is there a difference between these games?

- Summary: enumerate choices, try a choice, undo a choice, this is brute force search: try everything

Backtracking, minimax, game search

- We’ll use tic-tac-toe to illustrate the idea, but it’s a silly game to show the power of the method
 - What games might be better? Problems?

- Minimax idea: two players, one maximizes score, the other minimizes score, search complete/partial game tree for best possible move
 - In tic-tac-toe we can search until the end-of-the game, but this isn’t possible in general, why not?
 - Use static board evaluation functions instead of searching all the way until the game ends

- Minimax leads to alpha-beta search, then to other rules and heuristics

Computer v. Human in Games

- Computers can explore a large search space of moves quickly
 - How many moves possible in chess, for example?

- Computers cannot explore every move (why) so must use heuristics
 - Rules of thumb about position, strategy, board evaluation
 - Try a move, undo it and try another, track the best move

- What do humans do well in these games? What about computers?
 - What about at Duke?

Minimax for tic-tac-toe

- Players alternate, one might be computer, one human (or two computer players)

- Simple rules: win scores +10, loss scores -10, tie is zero
 - X maximizes, O minimizes

- Assume opponent plays smart
 - What happens otherwise?

- As game tree is explored is there redundant search?
 - What can we do about this?