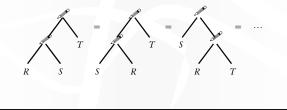
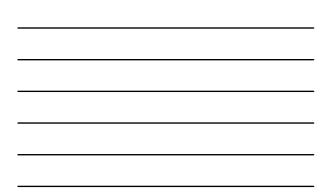


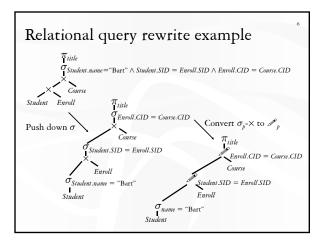
- The provide the second equivalences \mathcal{T} Join reordering: \times and \mathscr{S} are associative and
- commutative (except column ordering, but that is unimportant)





More relational algebra equivalences

- ♦ Convert σ_p -× to/from \mathscr{P}_p : $\sigma_p(R \times S) = R \mathscr{P}_p S$
- ♦ Merge/split π 's: $\pi_{L1}(\pi_{L2} R) = \pi_{L1} R$, where $L1 \subseteq L2$
- Push down/pull up σ :
 - $\sigma_{p \wedge pr \wedge ps} \left(R \mathscr{P}_{p'} S \right) = (\sigma_{pr} R) \mathscr{P}_{p \wedge p'} (\sigma_{ps} S), \text{ where }$
 - *pr* is a predicate involving only *R* columns
 - *ps* is a predicate involving only *S* columns
 - p and p' are predicates involving both R and S columns
- ♦ Push down π : $\pi_L (\sigma_p R) = \pi_L (\sigma_p (\pi_{LL'} R))$, where • L' is the set of columns referenced by p that are not in L
- Many more (seemingly trivial) equivalences...
 - Can be systematically used to transform a plan to new ones



Heuristics-based query optimization

- ✤ Start with a logical plan
- $\boldsymbol{\diamond}$ Push selections/projections down as much as possible
- Why?
- Why not?
- Join smaller relations first, and avoid cross product
 Why?
 - Why not?
- Convert the transformed logical plan to a physical plan (by choosing appropriate physical operators)

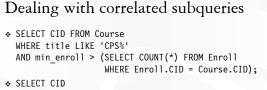
SQL query rewrite

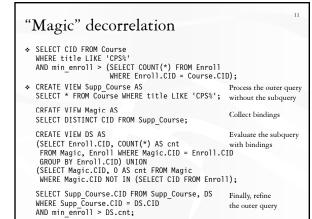
- More complicated—subqueries and views divide a query into nested "blocks"
 - Processing each block separately forces particular join methods and join order
 - Even if the plan is optimal for each block, it may not be optimal for the entire query
- Unnest query: convert subqueries/views to joins
- "We can just deal with select-project-join queries
 - Where the clean rules of relational algebra apply

SQL query rewrite example

♦ SELECT name FROM Student

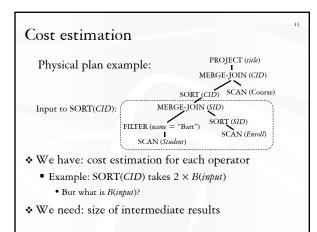
- WHERE SID = ANY (SELECT SID FROM Enroll);
- \$ SELECT name
 FROM Student, Enroll
 WHERE Student.SID = Enroll.SID;
- \$ SELECT name
 FROM (SELECT DISTINCT Student.SID, name
 FROM Student, Enroll
 WHERE Student.SID = Enroll.SID);





Heuristics- vs. cost-based optimization

- * Heuristics-based optimization
 - Apply heuristics to rewrite plans into cheaper ones
- * Cost-based optimization
 - Rewrite logical plan to combine "blocks" as much as possible
 - Optimize query block by block
 - Enumerate logical plans (already covered)
 - Estimate the cost of plans
 - Pick a plan with acceptable cost
 - Focus: select-project-join blocks



Selections with equality predicates

14

 $\diamond Q: \sigma_{A=v} R$

 \clubsuit Suppose the following information is available

• Size of R: |R|

• Number of distinct A values in R: $|\pi_A R|$

* Assumptions

• Values of A are uniformly distributed in R

• Values of v in Q are uniformly distributed over all R.A values

$$\diamond |Q| \approx |R| / |\pi_A R|$$

• Selectivity factor of (A = v) is $1 / |\pi_A R|$

Conjunctive predicates

 $\diamond Q: \sigma_{A = u \text{ and } B = v} R$

- * Additional assumptions
 - (A = u) and (B = v) are independent
 Counterexample: major and advisor
 - No "over"-selection
 - Counterexample: A is the key
- $\diamond |Q| \approx |R| / (|\pi_A R| \cdot |\pi_B R|)$
 - Reduce total size by all selectivity factors

Negated and disjunctive predicates * $Q: \sigma_{A \neq v} R$ • $|Q| \approx |R| \cdot (1 - 1/|\pi_A R|)$ • Selectivity factor of $\neg p$ is (1 - selectivity factor of p)* $Q: \sigma_{A = u \text{ or } B = v} R$ • $|Q| \approx |R| \cdot (1/|\pi_A R| + 1/|\pi_B R|)$?

Range predicates

 $\diamond Q: \sigma_{A > v} R$

- Not enough information!
- Just pick, say, $|Q| \approx |R| \cdot 1/3$
- $\boldsymbol{\ast}$ With more information
 - Largest R.A value: high(R.A)
 - Smallest R.A value: low(R.A)
 - $|Q| \approx |R| \cdot (\operatorname{high}(R.A) v)/(\operatorname{high}(R.A) \operatorname{low}(R.A))$
 - In practice: sometimes the second highest and lowest are used instead

17

Two-way equi-join

$\bigstar Q: R(A, B) \, \mathscr{N} S(A, C)$

- * Assumption: containment of value sets
 - Every tuple in the "smaller" relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
 - That is, if $|\pi_A R| \leq |\pi_A S|$ then $\pi_A R \subseteq \pi_A S$
 - Certainly not true in general
 - But holds in the common case of foreign key joins

$$\diamond |Q| \approx |R| \cdot |S| / \max(|\pi_A R|, |\pi_A S|)$$

• Selectivity factor of R.A = S.A is $1/\max(|\pi_A R|, |\pi_A S|)$

Multiway equi-join

- $\diamond Q: R(A, B) \swarrow S(B, C) \swarrow T(C, D)$
- ✤ What is the number of distinct *C* values in the join of *R* and *S*?
- * Assumption: preservation of value sets
 - A non-join attribute does not lose values from its set of possible values
 - That is, if A is in R but not S, then $\pi_A(R \swarrow S) = \pi_A R$
 - Certainly not true in general
 - But holds in the common case of foreign key joins (for value sets from the referencing table)

Multiway equi-join (cont'd)

 $\bigstar Q: R(A, B) \overset{\infty}{\checkmark} S(B, C) \overset{\infty}{\backsim} T(C, D)$

- $\boldsymbol{\ast}$ Start with the product of relation sizes
- $\bullet |R| \cdot |S| \cdot |T|$
- Reduce the total size by the selectivity factor of each join predicate
 - $R.B = S.B: 1 / \max(|\pi_B R|, |\pi_B S|)$
 - $S.C = T.C: 1/\max(|\pi_C S|, |\pi_C T|)$
 - $|Q| \approx (|R| \cdot |S| \cdot |T|)/$ (max($|\pi_B R|, |\pi_B S|$) · max($|\pi_C S|, |\pi_C T|$))

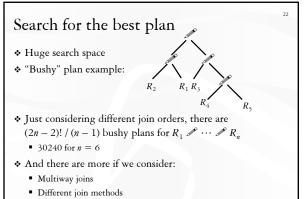
Cost estimation: summary

 Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)

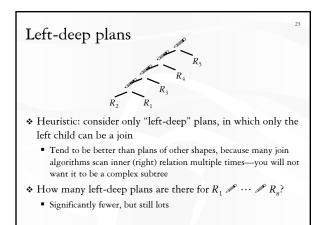
21

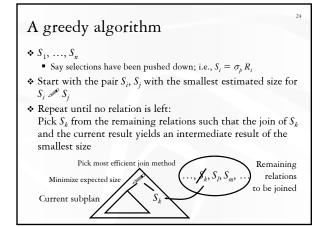
- * Lots of assumptions and very rough estimation
 - Accurate estimate is not needed
 - Maybe okay if we overestimate or underestimate consistently

- SELECT * FROM Student WHERE GPA > 3.9;
- SELECT * FROM Student WHERE GPA > 3.9 AND GPA > 3.9;
- * Not covered: better estimation using histograms



Placement of selection and projection operators





A dynamic programming approach

 $\boldsymbol{\diamond}$ Generate optimal plans bottom-up

- Pass 1: Find the best single-table plans (for each table)
- Pass 2: Find the best two-table plans (for each pair of tables) by combining best single-table plans
- ...
- Pass k: Find the best k-table plans (for each combination of k tables) by combining two smaller best plans found in previous passes
- ...
- Rationale: Any subplan of an optimal plan must also be optimal (otherwise, just replace the subplan to get a better overall plan)
- ☞ Well, not quite...

The need for "interesting order"

- ***** Example: $R(A, B) \swarrow S(A, C) \swarrow T(A, D)$
- * Best plan for $R \swarrow S$: hash join (beats sort-merge join)
- * Best overall plan: sort-merge join R and S, and then sort-merge join with T
 - Subplan of the optimal plan is not optimal!
- ♦ Why?
 - The result of the sort-merge join of R and S is sorted on A
 - This is an interesting order that can be exploited by later processing (e.g., join, duplicate elimination, GROUP BY, ORDER BY, etc.)!

Dealing with interesting orders

* When picking the best plan

- Comparing their costs is not enough
 - Plans are not totally ordered by cost anymore
- Comparing interesting orders is also needed
 - Plans are now partially ordered Plan X is better than plan Y if
 - Cost of X is lower than Y
 - Interesting orders produced by X subsume those produced by Y
- Need to keep a set of optimal plans for joining every combination of k tables
 - At most one for each interesting order

Summary

- * Relational algebra equivalence
- ♦ SQL rewrite tricks
- $\boldsymbol{\textbf{\diamond}}$ Heuristics-based optimization
- $\boldsymbol{\ast}$ Cost-based optimization
 - Need statistics to estimate sizes of intermediate results

28

- Greedy approach
- Dynamic programming approach