
5 Greedy Algorithms

The philosophy of being greedy is shortsightedness. Al-
ways go for the seemingly best next thing, always op-
timize the presence, without any regard for the future,
and never change your mind about the past. The greedy
paradigm is typically applied to optimization problems. In
this section, we first consider a scheduling problem and
second the construction of optimal codes.

A scheduling problem. Consider a set of activities
1, 2, . . . , n. Activity i starts at timesi and finishes
at time fi > si. Two activities i and j overlap if
[si, fi] ∩ [sj , fj ] 6= ∅. The objective is to select a maxi-
mum number of pairwise non-overlapping activities. An
example is shown in Figure 6. The largest number of ac-

c
d

b h
ga

e

time

f

[

[
[

[
[

[
[

[

]

]
]

]
]

]

]
]

Figure 6: A best schedule isc, e, f , but there are also others of
the same size.

tivities can be scheduled by choosing activities with early
finish times first. We first sort and reindex such thati < j

impliesfi ≤ fj .

S = {1}; last = 1;
for i = 2 to n do
if flast < si then

S = S ∪ {i}; last = i

endif
endfor.

The running time is O(n log n) for sorting plus O(n) for
the greedy collection of activities.

It is often difficult to determine how close to the opti-
mum the solutions found by a greedy algorithm really are.
However, for the above scheduling problem the greedy
algorithm always finds an optimum. For the proof let
1 = i1 < i2 < . . . < ik be the greedy schedule con-
structed by the algorithm. Letj1 < j2 < . . . < jℓ be any
other feasible schedule. Sincei1 = 1 has the earliest finish
time of any activity, we havefi1 ≤ fj1 . We can therefore
addi1 to the feasible schedule and remove at most one ac-
tivity, namelyj1. Among the activities that do not overlap
i1, i2 has the earliest finish time, hencefi2 ≤ fj2 . We can
again addi2 to the feasible schedule and remove at most

one activity, namelyj2 (or possiblyj1 if it was not re-
moved before). Eventually, we replace the entire feasible
schedule by the greedy schedule without decreasing the
number of activities. Since we could have started with a
maximum feasible schedule, we conclude that the greedy
schedule is also maximum.

Binary codes. Next we consider the problem of encod-
ing a text using a string of 0s and 1s. Abinary codemaps
each letter in the alphabet of the text to a unique string
of 0s and 1s. Suppose for example that the letter ‘t’ is
encoded as ‘001’, ‘h’ is encoded as ‘101’, and ‘e’ is en-
coded as ‘01’. Then the word ‘the’ would be encoded as
the concatenation of codewords: ‘00110101’. This partic-
ular encoding is unambiguous because the code isprefix-
free: no codeword is prefix of another codeword. There is

1

10

h

1

1

0

0 1 h

t e

0

e

t

0 1

Figure 7: Letters correspond to leaves and codewords correspond
to maximal paths. A left edge is read as ‘0’ and a right edge as
‘1’. The tree to the right is full and improves the code.

a one-to-one correspondence between prefix-free binary
codes and binary trees where each leaf is a letter and the
corresponding codeword is the path from the root to that
leaf. Figure 7 illustrates the correspondence for the above
3-letter code. Being prefix-free corresponds to leaves not
having children. The tree in Figure 7 is not full because
three of its internal nodes have only one child. This is an
indication of waste. The code can be improved by replac-
ing each node with one child by its child. This changes
the above code to ‘00’ for ‘t’, ‘ 1’ for ‘h’, and ‘01’ for ‘e’.

Huffman trees. Let wi be the frequency of the letterci

in the given text. It will be convenient to refer towi as
the weight of ci or of its external node. To get an effi-
cient code, we choose short codewords for common let-
ters. Supposeδi is the length of the codeword forci. Then
the number of bits for encoding the entire text is

P =
∑

i

wi · δi.

Sinceδi is the depth of the leafci, P is also known as the
weighted external path lengthof the corresponding tree.

14



TheHuffman treefor theci minimizes the weighted ex-
ternal path length. To construct this tree, we start withn

nodes, one for each letter. At each stage of the algorithm,
we greedily pick the two nodes with smallest weights and
make them the children of a new node with weight equal
to the sum of two weights. We repeat until only one node
remains. The resulting tree for a collection of nine letters
with displayed weights is shown in Figure 8. Ties that

38

17

61

23

13

7
10

4

21 86395315

Figure 8: The numbers in the external nodes (squares) are the
weights of the corresponding letters, and the ones in the internal
nodes (circles) are the weights of these nodes. The Huffman tree
is full by construction.

001

000

11

101

100

01110

01111

0110
010

5

61

23 38

10 13

31

43

5

17

6

21

987

Figure 9: The weighted external path length is15 + 15 + 18 +

12 + 5 + 15 + 24 + 27 + 42 = 173.

arise during the algorithm are broken arbitrarily. We re-
draw the tree and order the children of a node as left and
right child arbitrarily, as shown in Figure 9.

The algorithm works with a collectionN of nodes
which are the roots of the trees constructed so far. Ini-
tially, each leaf is a tree by itself. We denote the weight
of a node byw(µ) and use a function EXTRACTM IN that
returns the node with the smallest weight and, at the same
time, removes this node from the collection.

Tree HUFFMAN

loop µ = EXTRACTM IN(N);
if N = ∅ then return µ endif;
ν = EXTRACTM IN(N);
create nodeκ with childrenµ andν

and weightw(κ) = w(µ) + w(ν);
addκ to N

forever.

Straightforward implementations use an array or a linked
list and take time O(n) for each operation involvingN .
There are fewer than2n extractions of the minimum and
fewer thann additions, which implies that the total run-
ning time is O(n2). We will see later that there are better
ways to implementN leading to running time O(n logn).

An inequality. We prepare the proof that the Huffman
tree indeed minimizes the weighted external path length.
Let T be a full binary tree with weighted external path
lengthP (T ). Let Λ(T ) be the set of leaves and letµ and
ν be any two leaves with smallest weights. Then we can
construct a new treeT ′ with

(1) set of leavesΛ(T ′) = (Λ(T ) − {µ, ν}) ∪̇ {κ} ,

(2) w(κ) = w(µ) + w(ν),

(3) P (T ′) ≤ P (T ) − w(µ) − w(ν), with equality if µ
andν are siblings.

We now argue thatT ′ really exists. Ifµ andν are siblings
then we constructT ′ from T by removingµ andν and
declaring their parent,κ, as the new leaf. Then

µ νµ σ

ν σ

Figure 10: The increase in the depth ofν is compensated by the
decrease in depth of the leaves in the subtree ofσ.

P (T ′) = P (T ) − w(µ)δ − w(ν)δ + w(κ)(δ − 1)

= P (T ) − w(µ) − w(ν),

whereδ = δ(µ) = δ(ν) = δ(κ) + 1 is the common depth
of µ andν. Otherwise, assumeδ(µ) ≥ δ(ν) and letσ be

15



the sibling ofµ, which may or may not be a leaf. Exchange
ν andσ. Since the length of the path from the root toσ

is at least as long as the path toµ, the weighted external
path length can only decrease; see Figure 10. Then do the
same as in the other case.

Proof of optimality. The optimality of the Huffman tree
can now be proved by induction.

HUFFMAN TREE THEOREM. Let T be the Huffman tree
andX another tree with the same set of leaves and
weights. ThenP (T ) ≤ P (X).

PROOF. If there are only two leaves then the claim is obvi-
ous. Otherwise, letµ andν be the two leaves selected by
the algorithm. Construct treesT ′ andX ′ with

P (T ′) = P (T ) − w(µ) − w(ν),

P (X ′) ≤ P (X) − w(µ) − w(ν).

T ′ is the Huffman tree forn − 1 leaves so we can use the
inductive assumption and getP (T ′) ≤ P (X ′). It follows
that

P (T ) = P (T ′) + w(µ) + w(ν)

≤ P (X ′) + w(µ) + w(ν)

≤ P (X).

Huffman codesare binary codes that correspond to
Huffman trees as described. They are commonly used to
compress text and other information. Although Huffman
codes are optimal in the sense defined above, there are
other codes that are also sensitive to the frequency of se-
quences of letters and this way outperform Huffman codes
for general text.

Summary. The greedy algorithm for constructing Huff-
man trees works bottom-up by stepwise merging, rather
than top-down by stepwise partitioning. If we run the
greedy algorithm backwards, it becomes very similar to
dynamic programming, except that it pursues only one of
many possible partitions. Often this implies that it leads
to suboptimal solutions. Nevertheless, there are problems
that exhibit enough structure that the greedy algorithm
succeeds in finding an optimum, and the scheduling and
coding problems described above are two such examples.

16


