
10 Heaps and Heapsort

A heap is a data structure that stores a set and allows fast
access to the item with highest priority. It is the basis of
a fast implementation of selection sort. On the average
this algorithm is a little slower than quicksort but it is not
sensitive to the input ordering or to random bits and runs
about as fast in the worst case as on the average.

Priority queues. A data structure implements theprior-
ity queue abstract data type if it supports at least the fol-
lowing operations:

void INSERT (item),
item FINDM IN (void),
void DELETEM IN (void).

The operations are applied to a set of items with priori-
ties. The priorities are totally ordered so any two can be
compared. To avoid any confusion, we will usually refer
to the priorities as ranks. We will always use integers as
priorities and follow the convention that smaller ranks rep-
resent higher priorities. In many applications, FINDM IN

and DELETEM IN are combined:

void EXTRACTM IN(void)
r = FINDM IN; DELETEM IN; return r.

Function EXTRACTM IN removes and returns the item
with smallest rank.

Heap. A heap is a particularly compact priority queue.
We can think of it as a binary tree with items stored in the
internal nodes, as in Figure 39. Each level is full except

13

8

7

96

5

8

2

15

12107

Figure 39: Ranks increase or, more precisely, do not decrease
from top to bottom.

possibly the last, which is filled from left to right until
we run out of items. The items are stored inheap-order:
every nodeµ has a rank larger than or equal to the rank of
its parent. Symmetrically,µ has a rank less than or equal

to the ranks of both its children. As a consequence, the
root contains the item with smallest rank.

We store the nodes of the tree in a linear array, level
by level from top to bottom and each level from left to
right, as shown in Figure 40. The embedding saves ex-

6 9 8 15 8 772 5 10
7 8 9 10 11 126

12 13
1 2 3 4 5

Figure 40: The binary tree is layed out in a linear array. The root
is placed inA[1], its children follow inA[2] andA[3], etc.

plicit pointers otherwise needed to establish parent-child
relations. Specifically, we can find the children and par-
ent of a node by index computation: the left child ofA[i]
is A[2i], the right child isA[2i + 1], and the parent is
A[⌊i/2⌋]. The item with minimum rank is stored in the
first element:

item FINDM IN(int n)
assert n ≥ 1; return A[1].

Since the index along a path at least doubles each step,
paths can have length at mostlog

2
n.

Deleting the minimum. We first study the problem of
repairing the heap-order if it is violated at the root, as
shown in Figure 41. Letn be the length of the array. We

8 10

6 9

2

7

87 12

15

13

5

Figure 41: The root is exchanged with the smaller of its two
children. The operation is repeated along a single path until the
heap-order is repaired.

repair the heap-order by a sequence of swaps along a sin-
gle path. Each swap is between an item and the smaller of
its children:

35



void SIFT-DN(int i, n)
if 2i ≤ n then

k = arg min{A[2i], A[2i + 1]}
if A[k] < A[i] then SWAP(i, k);

SIFT-DN(k, n)
endif

endif.

Here we assume thatA[n + 1] is defined and larger than
A[n]. Since a path has at mostlog

2
n edges, the time to re-

pair the heap-order takes time at most O(log n). To delete
the minimum we overwrite the root with the last element,
shorten the heap, and repair the heap-order:

void DELETEM IN(int ∗ n)
A[1] = A[∗n]; ∗n−−; SIFT-DN(1, ∗n).

Instead of the variable that storesn, we pass a pointer to
that variable,∗n, in order to use it as input and output
parameter.

Inserting. Consider repairing the heap-order if it is vio-
lated at the last position of the heap. In this case, the item
moves up the heap until it reaches a position where its rank
is at least as large as that of its parent.

void SIFT-UP(int i)
if i ≥ 2 then k = ⌊i/2⌋;
if A[i] < A[k] then SWAP(i, k);

SIFT-UP(k)
endif

endif.

An item is added by first expanding the heap by one ele-
ment, placing the new item in the position that just opened
up, and repairing the heap-order.

void INSERT(int ∗ n, item x)
∗n++; A[∗n] = x; SIFT-UP(∗n).

A heap supports FINDM IN in constant time and INSERT

and DELETEM IN in time O(log n) each.

Sorting. Priority queues can be used for sorting. The
first step throws all items into the priority queue, and the
second step takes them out in order. Assuming the items
are already stored in the array, the first step can be done
by repeated heap repair:

for i = 1 to n do SIFT-UP(i) endfor.

In the worst case, thei-th item moves up all the way to
the root. The number of exchanges is therefore at most∑

n

i=1
log

2
i ≤ n log

2
n. The upper bound is asymptot-

ically tight because half the terms in the sum are at least
log

2

n

2
= log

2
n−1. It is also possible to construct the ini-

tial heap in time O(n) by building it from bottom to top.
We modify the first step accordingly, and we implement
the second step to rearrange the items in sorted order:

void HEAPSORT(int n)
for i = n downto 1 do SIFT-DN(i, n) endfor;
for i = n downto 1 do

SWAP(i, 1); SIFT-DN(1, i − 1)
endfor.

At each step of the firstfor-loop, we consider the sub-
tree with rootA[i]. At this moment the items in the left
and right subtrees rooted atA[2i] andA[2i + 1] are al-
ready heaps. We can therefore use one call to function
SIFT-DN to make the subtree with rootA[i] a heap. We
will prove shortly that this bottom-up construction of the
heap takes time only O(n). Figure 42 shows the array
after each iteration of the secondfor-loop. Note how
the heap gets smaller by one element each step. A sin-

15 10 12 13

121015

788

15

15

15

15

13

77889

25

6

12 13 10

1312

25

7

9

256798

2

9 86 7 8

6 5

2

7789

256

6

567713

25

6

8 9 12

10 128

10

10

12107 8 13

8

13

10 12

1312 15

1513

13

15

12139 10 15

15

8

8 8 7 7 6 5 29

7788910

1012

7 6 5 2

7 87

15 9 8 8 7101213

7

2 5 7

975 6 7

25

8

6 9 8 8 7

28

Figure 42: Each step moves the last heap element to the root and
thus shrinks the heap. The circles mark the items involved inthe
sift-down operation.

gle sift-down operation takes time O(log n), and in total
HEAPSORT takes time O(n log n). In addition to the in-
put array, HEAPSORT uses a constant number of variables

36



and memory for the recursion stack used by SIFT-DN.
We can save the memory for the stack by writing func-
tion SIFT-DN as an iteration. The sort can be changed to
non-decreasing order by reversing the order of items in the
heap.

Analysis of heap construction. We return to proving
that the bottom-up approach to constructing a heap takes
only O(n) time. Assuming the worst case, in which ev-
ery node sifts down all the way to the last level, we draw
the swaps as edges in a tree; see Figure 43. To avoid

Figure 43: Each node generates a path that shares no edges with
the paths of the other nodes.

drawing any edge twice, we always first swap to the right
and then continue swapping to the left until we arrive at
the last level. This introduces only a small inaccuracy in
our estimate. The paths cover each edge once, except for
the edges on the leftmost path, which are not covered at
all. The number of edges in the tree isn − 1, which im-
plies that the total number of swaps is less thann. Equiv-
alently, the amortized number of swaps per item is less
than 1. There is a striking difference in time-complexity
to sorting, which takes an amortized number of about
log

2
n comparisons per item. The difference between 1

and log
2
n may be interpreted as a measure of how far

from sorted a heap-ordered array still is.

37


